PS4: WAVES and Their Applications in Technologies for Information Transfer 

How are waves used to transfer energy and information? 

Waves are a repeating pattern of motion that transfers energy from place to place without overall displacement of matter. Light and sound are wavelike phenomena. By understanding wave properties and the interactions of electromagnetic radiation with matter, scientists and engineers can design systems for transferring information across long distances, storing information, and investigating nature on many scales—some of them far beyond direct human perception. 

PS4.A: WAVE PROPERTIES  

What are the characteristic properties and behaviors of waves? 

Whether a wave in water, a sound wave, or a light wave, all waves have some features in common. A simple wave has a repeating pattern of specific wavelength, frequency, and amplitude. The wavelength and frequency of a wave are related to one another by the speed of travel of the wave, which, for each type of wave, depends on the medium in which the wave is traveling. Waves can be combined with other waves of the same type to produce complex information-containing patterns that can be decoded at the receiving end. Waves, which transfer energy and any encoded information without the bulk motion of matter, can travel unchanged over long distances, pass through other waves undisturbed, and be detected and decoded far from where they were produced. Information can be digitized (converted into a numerical representation), sent over long distances as a series of wave pulses, and reliably stored in computer memory.

Sound is a pressure wave in air or any other material medium. The human ear and brain working together are very good at detecting and decoding patterns of information in sound (e.g., speech and music) and distinguishing them from random noise.

Resonance is a phenomenon in which waves add up in phase (i.e., matched peaks and valleys), thus growing in amplitude. Structures have particular frequencies at which they resonate when some time-varying force acting on them transfers energy to them. This phenomenon (e.g., waves in a stretched string, vibrating air in a pipe) is used in the design of all musical instruments and in the production of sound by the human voice.

When a wave passes an object that is small compared with its wavelength, the wave is not much affected; for this reason, some things are too small to see with visible light, which is a wave phenomenon with a limited range of wavelengths corresponding to each color. When a wave meets the surface between two different materials or conditions (e.g., air to water), part of the wave is reflected at that surface and another part continues on, but at a different speed. The change of speed of the wave when passing from one medium to another can cause the wave to change direction or refract. These wave properties are used in many applications (e.g., lenses, seismic probing of Earth).

Source: NRC Framework

PS4.B: ELECTROMAGNETIC RADIATION 

What is light? How can one explain the varied effects that involve light? What other forms of electromagnetic radiation are there? 

Electromagnetic radiation (e.g., radio, microwaves, light) can be modeled as a wave pattern of changing electric and magnetic fields or, alternatively, as particles. Each model is useful for understanding aspects of the phenomenon and its inter-actions with matter, and quantum theory relates the two models. Electromagnetic waves can be detected over a wide range of frequencies, of which the visible spectrum of colors detectable by human eyes is just a small part. Many modern technologies are based on the manipulation of electromagnetic waves.

All electromagnetic radiation travels through a vacuum at the same speed, called the speed of light. Its speed in any given medium depends on its wavelength and the properties of that medium. At the surface between two media, like any wave, light can be reflected, refracted (its path bent), or absorbed. What occurs depends on properties of the surface and the wavelength of the light. When shorter wavelength electromagnetic radiation (ultraviolet, X-rays, gamma rays) is absorbed in matter, it can ionize atoms and cause damage to living cells. However, because X-rays can travel through soft body matter for some distance but are more rapidly absorbed by denser matter, particularly bone, they are useful for medical imaging. Photovoltaic materials emit electrons when they absorb light of a high-enough frequency. This phenomenon is used in barcode scanners and “electric eye” systems, as well as in solar cells. It is best explained using a particle model of light.

Any object emits a spectrum of electromagnetic radiation that depends on its temperature. In addition, atoms of each element emit and preferentially absorb characteristic frequencies of light. These spectral lines allow identification of the presence of the element, even in microscopic quantities or for remote objects, such as a star. Nuclear transitions that emit or absorb gamma radiation also have distinctive gamma ray wavelengths, a phenomenon that can be used to identify and trace specific radioactive isotopes.

Source: NRC Framework

PS4.C: INFORMATION TECHNOLOGIES AND INSTRUMENTATION 

How are instruments that transmit and detect waves used to extend human senses? 

Understanding of waves and their interactions with matter has been used to design technologies and instruments that greatly extend the range of phenomena that can be investigated by science (e.g., telescopes, microscopes) and have many useful applications in the modern world.

Light waves, radio waves, microwaves, and infrared waves are applied to communications systems, many of which use digitized signals (i.e., sent as wave pulses) as a more reliable way to convey information. Signals that humans cannot sense directly can be detected by appropriately designed devices (e.g., telescopes, cell phones, wired or wireless computer networks). When in digitized form, information can be recorded, stored for future recovery, and transmitted over long distances without significant degradation.

Medical imaging devices collect and interpret signals from waves that can travel through the body and are affected by, and thus gather information about, structures and motion within it (e.g., ultrasound, X-rays). Sonar (based on sound pulses) can be used to measure the depth of the sea, and a system based on laser pulses can measure the distance to objects in space, because it is known how fast sound travels in water and light travels in a vacuum. The better the interaction of the wave with the medium is understood, the more detailed the information that can be extracted (e.g., medical imaging or astronomical observations at multiple frequencies).

Source: NRC Framework

K-12 Progressions for PS4: Waves

PS4.pdf