The NRC asserts that “any [science] education that focuses predominantly on the detailed products of scientific labor—the facts of science—without developing an understanding of how those facts were established or that ignores the many important applications of science in the world misrepresents science and marginalizes the importance of engineering.” This statement has two implications for science education standards in general and for this report’s framework in particular. The first is that students should learn how scientific knowledge is acquired and how scientific explanations are developed. The second is that students should learn how science is utilized, in particular through the engineering design process, and they should come to appreciate the distinctions and relationships between engineering, technology, and applications of science (ETS). These three terms are defined below:
Technology is any modification of the natural world made to fulfill human needs or desires [2].
Engineering is a systematic and often iterative approach to designing objects, processes, and systems to meet human needs and wants [2].
An application of science is any use of scientific knowledge for a specific purpose, whether to do more science; to design a product, process, or medical treatment; to develop a new technology; or to predict the impacts of human actions.
An understanding of engineering practices can develop as they are used in the classroom to help students acquire and apply science knowledge. There is also a domain of knowledge related to these practices, and it constitutes the framework’s first ETS core idea—ETS1: Engineering Design. Although there is not yet broad agreement on the full set of core ideas in engineering [1], an emerging consensus is that design is a central practice of engineering; indeed, design is the focus of the vast majority of K-12 engineering curricula currently in use. The committee is aware that engineers not only design new technologies, but they also sometimes fabricate, operate, inspect, and maintain them. However, from a teaching and learning point of view, it is the iterative cycle of design that offers the greatest potential for applying science knowledge in the classroom and engaging in engineering practices. The components of this core idea include understanding how engineering problems are defined and delimited, how models can be used to develop and refine possible solutions to a design problem, and what methods can be employed to optimize a design.
The second ETS core idea calls for students to explore, as its name implies, the “Links Among Engineering, Technology, Science, and Society” (ETS2). The applications of science knowledge and practices to engineering, as well as to such areas as medicine and agriculture, have contributed to the technologies and the systems that support them that serve people today. Insights gained from scientific discovery have altered the ways in which buildings, bridges, and cities are constructed; changed the operations of factories; led to new methods of generating and distributing energy; and created new modes of travel and communication.
Scientific insights have informed methods of food production, waste disposal, and the diagnosis and treatment of disease. In other words, science-based, or science-improved, designs of technologies and systems affect the ways in which people interact with each other and with the environment, and thus these designs deeply influence society.
In turn, society influences science and engineering. Societal decisions, which may be shaped by a variety of economic, political, and cultural factors, establish goals and priorities for technologies’ improvement or replacement. Such decisions also set limits—in controlling the extraction of raw materials, for example, or in setting allowable emissions of pollution from mining, farming, and industry. Goals, priorities, and limits are needed for regulating new technologies, which can have deep impacts on society and the environment. The impacts may not have been anticipated when the technologies were introduced (e.g., refrigerant gases that depleted stratospheric ozone) or may build up over time to levels that require mitigation (toxic pesticides, lead in gasoline). Thus the balancing of technologies’ costs, benefits, and risks is a critical element of ETS2. Box 8-2 summarizes the framework’s two ETS core ideas and their components.
The fields of science and engineering are mutually supportive. New technologies expand the reach of science, allowing the study of realms previously inaccessible to investigation; scientists depend on the work of engineers to produce the instruments and computational tools they need to conduct research. Engineers in turn depend on the work of scientists to understand how different technologies work so they can be improved; scientific discoveries are exploited to create new technologies in the first place. Scientists and engineers often work together in teams, especially in new fields, such as nanotechnology or synthetic biology that blur the lines between science and engineering. Students should come to understand these interactions and at increasing levels of sophistication as they mature. Their appreciation of the interface of science, engineering, and society should give them deeper insights into local, national, and global issues.
The 2010 National Academy of Engineering report Standards for K-12 Engineering Education concluded that it is not appropriate at present to develop standalone K-12 engineering standards. But the report also made it clear that engineering concepts and skills are already embedded in existing standards for science and technology education, at both the state and national levels—and the report recommended that this practice continue. In addition, it affirmed the value of teaching engineering ideas, particularly engineering design, to young students.
In line with those conclusions and recommendations, the goal of this section of the framework is not to replace current K-12 engineering and technology courses. The goal is rather to strengthen the science education provided to K-12 students by making the connections between engineering, technology, and applications of science explicit, both for standards developers and curriculum developers. In that way, we hope to ensure that all students, whatever their path through K-12 education, gain an appreciation of these connections. Source: NRC Framework
Engineering and science are similar in that both involve creative processes, and neither uses just one method. And just as scientific investigation has been defined in different ways, engineering design has been described in various ways. However, there is widespread agreement on the broad outlines of the engineering design process .
Like scientific investigations, engineering design is both iterative and systematic. It is iterative in that each new version of the design is tested and then modified, based on what has been learned up to that point. It is systematic in that a number of characteristic steps must be undertaken. One step is identifying the problem and defining specifications and constraints. Another step is generating ideas for how to solve the problem; engineers often use research and group sessions (e.g., “brainstorming”) to come up with a range of solutions and design alternatives for further development. Yet another step is the testing of potential solutions through the building and testing of physical or mathematical models and prototypes, all of which provide valuable data that cannot be obtained in any other way. With data in hand, the engineer can analyze how well the various solutions meet the given specifications and constraints and then evaluate what is needed to improve the leading design or devise a better one.
In contrast, scientific studies may or may not be driven by any immediate practical application. On one hand, certain kinds of scientific research, such as that which led to Pasteur’s fundamental contributions to the germ theory of disease, were undertaken for practical purposes and resulted in important new technologies, including vaccination for anthrax and rabies and the pasteurization of milk to prevent spoilage. On the other hand, many scientific studies, such as the search for the planets orbiting distant stars, are driven by curiosity and undertaken with the aim of answering a question about the world or understanding an observed pattern. For science, developing such an explanation constitutes success in and of itself, regardless of whether it has an immediate practical application; the goal of science is to develop a set of coherent and mutually consistent theoretical descriptions of the world that can provide explanations over a wide range of phenomena, For engineering, however, success is measured by the extent to which a human need or want has been addressed.
Both scientists and engineers engage in argumentation, but they do so with different goals. In engineering, the goal of argumentation is to evaluate prospective designs and then produce the most effective design for meeting the specifications and constraints. This optimization process typically involves trade-offs between competing goals, with the consequence that there is never just one “correct” solution to a design challenge. Instead, there are a number of possible solutions, and choosing among them inevitably involves personal as well as technical and cost considerations. Moreover, the continual arrival of new technologies enables new solutions.
In contrast, theories in science must meet a very different set of criteria, such as parsimony (a preference for simpler solutions) and explanatory coherence (essentially how well any new theory provides explanations of phenomena that fit with observations and allow predictions or inferences about the past to be made). Moreover, the aim of science is to find a single coherent and comprehensive theory for a range of related phenomena. Multiple competing explanations are regarded as unsatisfactory and, if possible, the contradictions they contain must be resolved through more data, which enable either the selection of the best available explanation or the development of a new and more comprehensive theory for the phenomena in question.
Although we do not expect K-12 students to be able to develop new scientific theories, we do expect that they can develop theory-based models and argue using them, in conjunction with evidence from observations, to develop explanations. Indeed, developing evidence-based models, arguments, and explanations is key to both developing and demonstrating understanding of an accepted scientific viewpoint.
Source: NRC Framework