PS1:
Matter & Its Interactions

    Crystal Cave, Naica Mine, Chihuahua, Mexico

How can one explain the structure, properties, and interactions of matter? 

The existence of atoms, now supported by evidence from modern instruments, was first postulated as a model that could explain both qualitative and quantitative observations about matter (e.g., Brownian motion, ratios of reactants and products in chemical reactions). Matter can be understood in terms of the types of atoms present and the interactions both between and within them. The states (i.e., solid, liquid, gas, or plasma), properties (e.g., hardness, conductivity), and reactions (both physical and chemical) of matter can be described and predicted based on the types, interactions, and motions of the atoms within it. Chemical reactions, which underlie so many observed phenomena in living and nonliving systems alike, conserve the number of atoms of each type but change their arrangement into molecules. Nuclear reactions involve changes in the types of atomic nuclei present and are key to the energy release from the sun and the balance of isotopes in matter. 

PS1.A: STRUCTURE AND PROPERTIES OF MATTER 

How do particles combine to form the variety of matter one observes? 

While too small to be seen with visible light, atoms have substructures of their own. They have a small central region or nucleus—containing protons and neutrons—surrounded by a larger region containing electrons. The number of protons in the atomic nucleus (atomic number) is the defining characteristic of each element; different isotopes of the same element differ in the number of neutrons only. Despite the immense variation and number of substances, there are only some 100 different stable elements.

Each element has characteristic chemical properties. The periodic table, a systematic representation of known elements, is organized horizontally by increasing atomic number and vertically by families of elements with related chemical properties. The development of the periodic table (which occurred well before atomic substructure was understood) was a major advance, as its patterns suggested and led to the identification of additional elements with particular properties. Moreover, the table’s patterns are now recognized as related to the atom’s outermost electron patterns, which play an important role in explaining chemical reactivity and bond formation, and the periodic table continues to be a useful way to organize this information.

The substructure of atoms determines how they combine and rearrange to form all of the world’s substances. Electrical attractions and repulsions between charged particles (i.e., atomic nuclei and electrons) in matter explain the structure of atoms and the forces between atoms that cause them to form molecules (via chemical bonds), which range in size from two to thousands of atoms (e.g., in biological molecules such as proteins). Atoms also combine due to these forces to form extended structures, such as crystals or metals. The varied properties (e.g., hardness, conductivity) of the materials one encounters, both natural and manufactured, can be understood in terms of the atomic and molecular constituents present and the forces within and between them.

Within matter, atoms and their constituents are constantly in motion. The arrangement and motion of atoms vary in characteristic ways, depending on the substance and its current state (e.g., solid, liquid). Chemical composition, temperature, and pressure affect such arrangements and motions of atoms, as well as the ways in which they interact. Under a given set of conditions, the state and some properties (e.g., density, elasticity, viscosity) are the same for different bulk quantities of a substance, whereas other properties (e.g., volume, mass) provide measures of the size of the sample at hand.

Materials can be characterized by their intensive measureable properties. Different materials with different properties are suited to different uses. The ability to image and manipulate placement of individual atoms in tiny structures allows for the design of new types of materials with particular desired functionality (e.g., plastics, nanoparticles). Moreover, the modern explanation of how particular atoms influence the properties of materials or molecules is critical to understanding the physical and chemical functioning of biological systems.

Source: NRC Framework

PS1.B: CHEMICAL REACTIONS 

How do substances combine or change (react) to make new substances? How does one characterize and explain these reactions and make predictions about them? 

Many substances react chemically with other substances to form new substances with different properties. This change in properties results from the ways in which atoms from the original substances are combined and rearranged in the new substances. However, the total number of each type of atom is conserved (does not change) in any chemical process, and thus mass does not change either. The property of conservation can be used, along with knowledge of the chemical properties of particular elements, to describe and predict the outcomes of reactions. Changes in matter in which the molecules do not change, but their positions and their motion relative to each other do change also occur (e.g., the forming of a solution, a change of state). Such changes are generally easier to reverse (return to original conditions) than chemical changes.

“Collision theory” provides a qualitative model for explaining the rates of chemical reactions. Higher rates occur at higher temperatures because atoms are typically moving faster and thus collisions are more frequent; also, a larger fraction of the collisions have sufficient energy to initiate the process. Although a solution or a gas may have constant chemical composition—that is, be in a steady state—chemical reactions may be occurring within it that are dynamically balanced with reactions in opposite directions proceeding at equal rates.

Any chemical process involves a change in chemical bonds and the related bond energies and thus in the total chemical binding energy. This change is matched by a difference between the total kinetic energy of the set of reactant molecules before the collision and that of the set of product molecules after the collision (conservation of energy). Some reactions release energy (e.g., burning fuel in the presence of oxygen), and others require energy input (e.g., synthesis of sugars from carbon dioxide and water).

Understanding chemical reactions and the properties of elements is essential not only to the physical sciences but also is foundational knowledge for the life sciences and the earth and space sciences. The cycling of matter and associated transfers of energy in systems, of any scale, depend on physical and chemical processes. The reactivity of hydrogen ions gives rise to many biological and geophysical phenomena. The capacity of carbon atoms to form the backbone of extended molecular structures is essential to the chemistry of life. The carbon cycle involves transfers between carbon in the atmosphere—in the form of carbon dioxide—and carbon in living matter or formerly living matter (including fossil fuels). The proportion of oxygen molecules (i.e., oxygen in the form O2) in the atmosphere also changes in this cycle.

Source: NRC Framework

PS1.C: NUCLEAR PROCESSES 

What forces hold nuclei together and mediate nuclear processes? 

Phenomena involving nuclei are important to understand, as they explain the formation and abundance of the elements, radioactivity, the release of energy from the sun and other stars, and the generation of nuclear power. To explain and predict nuclear processes, two additional types of interactions—known as strong and weak nuclear interactions—must be introduced. They play a fundamental role in nuclei, although not at larger scales because their effects are very short range.

The strong nuclear interaction provides the primary force that holds nuclei together and determines nuclear binding energies. Without it, the electromagnetic forces between protons would make all nuclei other than hydrogen unstable. Nuclear processes mediated by these interactions include fusion, fission, and the radioactive decays of unstable nuclei. These processes involve changes in nuclear binding energies and masses (as described by E = mc2), and typically they release much more energy per atom involved than do chemical processes.

Nuclear fusion is a process in which a collision of two small nuclei eventually results in the formation of a single more massive nucleus with greater net binding energy and hence a release of energy. It occurs only under conditions of extremely high temperature and pressure. Nuclear fusion occurring in the cores of stars provides the energy released (as light) from those stars. The Big Bang produced matter in the form of hydrogen and smaller amounts of helium and lithium. Over time, stars (including supernova explosions) have produced and dispersed all the more massive atoms, starting from primordial low-mass elements, chiefly hydrogen.

Nuclear fission is a process in which a massive nucleus splits into two or more smaller nuclei, which fly apart at high energy. The produced nuclei are often not stable and undergo subsequent radioactive decays. A common fission fragment is an alpha particle, which is just another name for a helium nucleus, given before this type of “radiation” was identified.

In addition to alpha particles, other types of radioactive decays produce other forms of radiation, originally labeled as “beta” and “gamma” particles and now recognized as electrons or positrons, and photons (i.e., high-frequency electromagnetic radiation), respectively. Because of the high-energy release in nuclear transitions, the emitted radiation (whether it be alpha, beta, or gamma type) can ionize atoms and may thereby cause damage to biological tissue.

Nuclear fission and radioactive decays limit the set of stable isotopes of elements and the size of the largest stable nucleus. Spontaneous radioactive decays follow a characteristic exponential decay law, with a specific lifetime (time scale) for each such process; the lifetimes of different nuclear decay processes range from fractions of a second to thousands of years. Some unstable but long-lived isotopes are present in rocks and minerals. Knowledge of their nuclear lifetimes allows radiometric dating to be used to determine the ages of rocks and other materials from the isotope ratios present.

In fission, fusion, and beta decay processes, atoms change type, but the total number of protons plus neutrons is conserved. Beta processes involve an additional type of interaction (the weak interaction) that can change neutrons into protons or vice versa, along with the emission or absorption of electrons or positrons and of neutrinos. Isolated neutrons decay by this process.

Source: NRC Framework

K-12 Progressions for PS1: Matter and Its Interactions 

PS1.pdf

Additional Resources: