Goal 1: 3D Flapping Wing Simulation
Goal 2: Build nonlinear differential equations in Simulink for a vehicle to mimic flapping wing motion
Goal 3: Form a-bk from the MS thesis and find the eigen values (it should be stable) with a closed loop (add a step input-a step graph should be obtained)
6/6/12
% Analysis of the dynamics of a crank arm connected to a
% mass−spring−damping system.
% Last modified on July 2, 2009
% Author: Stan Baek
lambda = .1; % ratio of crank arm length to connecting arm length
zeta_m = 0.1; % damping ratio of the motor
zeta = 0.1; % damping ration of the slider
theta = linspace(-pi,pi,30); % angular position of the crank arm
omega = linspace(0, 2, 30); % nondimensional angular velocity
[Theta Omega] = meshgrid(theta,omega);
beta = cos(Theta)...
+ lambda*cos(Theta).*sin(Theta)./sqrt(1-lambda^2.*cos(Theta).^2);
u = 2*zeta_m*Omega + beta.*sin(Theta)...
+ Omega.^2.*beta.*(2*zeta*sign(cos(Theta))*cos(Theta).^2 - sin(Theta));
mesh(Theta, Omega, u);
mesh(Theta, Omega, u);
set(gcf,'Position', [474 399 426 250]);
set(gca, 'XTick', [-pi -pi/2 0 pi/2 pi]);
set(gca, 'XTickLabel', {'−pi' '−pi/2' '0' 'pi/2' 'pi'});
set(gca, 'YTick', [0 0.5 1 1.5 2]);
set(gca, 'YTickLabel', {'0' '0.5' '1' '1.5' '2'});
xlabel('theta');
ylabel('Omega');
zlabel({'T'});
axis([-pi pi 0 2 -1 3.2])
omega = [0.8 0.9 1 1.1 1.2];
num_plot = length(omega);
cmap = colormap('jet');
colorOrder = cmap(floor(length(cmap)/num_plot): ...
floor(length(cmap)/num_plot):length(cmap),:);
% Effect of lambda
omega = 0.9;
zeta_m = 0.1;
zeta_s = 0.1;
Lambda = [0.4 0.3 .2 0.1 0.01];
Theta = linspace(-pi,pi,50);
figure
set(gcf,'Position', [474 399 426 250]);
for i = 1:length(Lambda)
Omega=omega;
lambda = Lambda(i);
mu = lambda*cos(Theta)./sqrt(1-lambda^2*sin(Theta).^2);
gamma = (1+mu).*sin(Theta);
dmu = -lambda*sin(Theta)./sqrt(1-lambda^2*sin(Theta).^2)+...
lambda^3*cos(Theta).^2.*sin(Theta)./(1-lambda^2*sin(Theta).^2).^(3/2);
T = Omega.*(2*zeta_m + 2*zeta_s*gamma.^2)+...
Omega.^2.*gamma.*(cos(Theta) + mu.*cos(Theta) + dmu.*sin(Theta))...
-gamma.*(cos(Theta) + cos(Theta)./mu - sqrt(1/lambda^2 -1) );
plot(Theta, T, 'Color',colorOrder(i,:));
hold on;
end
legend( strcat('\lambda = ', num2str(Lambda')));
set(gca, 'XTick', [-pi -pi/2 0 pi/2 pi]);
set(gca, 'XTickLabel', {'−pi' '−pi/2' '0' 'pi/2' 'pi'});
xlabel('theta');
ylabel('T');
Code for Mechanical Power:
% Analysis of the dynamics of a crank arm connected to a
% mass−spring−damping system.
% This script shows the output power of a geared motor with
% respect to constant driving angular speed.
% When the system is excited at the resonant frequency,
% the required output power is going to be minimum..
Theta = linspace(-pi,pi,300);
zeta = [0.1, 0.2, 0.3, 0.4];
zeta_m = 0.0;
lambda = 1/10;
OMEGA = linspace(0.001, 2, 200);
beta = cos(Theta) + ...
lambda*cos(Theta).*sin(Theta)./sqrt(1-lambda^2.*cos(Theta).^2);
Power = zeros(length(zeta), length(OMEGA));
for j = 1:length(zeta)
for i = 1:length(OMEGA)
Omega = OMEGA(i);
T = Omega*2*zeta_m + ...
Omega^2*beta.*(2*zeta(j)*sign(cos(Theta)).*cos(Theta).^2 - ...
sin(Theta)) + beta.*sin(Theta);
Power(j, i) = norm(T*Omega)/sqrt(length(T));
end
end
figure;
plot(OMEGA, Power(1,:), 'b', OMEGA, Power(2,:), 'r');
hold on;
plot(OMEGA, Power(3,:), 'g', OMEGA, Power(4,:), 'k');
xlabel('Omega');
ylabel('MechPower');
axis([0 1.5 0 1]);
6/3/12
5/29/12
/
5/27/12
5/16/12
Video 1: 3D Transient inlet and outlet block simulation
https://www.sharcnet.ca/Software/Fluent12/html/th/node39.htm
Table 1. Describes relevant papers in the field of numerical methods on flapping wings.
CFD References
[1] Bret K. Stanford and Philip S. Beran, U.S. Air Force Research Laboratory, "Analytical Sensitivity Analysis of an Unsteady Vortex-Lattice Method for Flapping-Wing Optimization", Journal of Aircraft, DOI: 10.2514/1.46259, (2010)
[2] F. Lesage, N. Hamel, X. Huang, W. Yuan, M. Khalid and P. Zdunich, DRDC Valcartier, Institute for Aerospace Research, NRC, Advanced Subsonics, Inc, "Initial investigation on the aerodynamic performance of flapping wings for nano air vehicles," Technical Memorandum, 2007-550 9, (2008)
[3] Daniel Norrison, RMIT University, "Nomad Flutter and Flow Simulation Acceleration for Elastic Wings", PhD, (2009)
[4] Gyung-Jin Park , Hanyang University , "Optimization of the Flapping Wing Systems for a Micro Air Vehicle", AOARD-09-4103, (2010)
[5] Daniel T. Prosser, Rochester Institute of Technology, "Flapping Wing Design for a Dragonfly-Like Micro Air Vehicle" MS, (2011)
[6] Zach Votaw, Zach Gaston, Aron Brezina, Asela Benthara, Haibo Dong, Wright State University, "Design and Analysis of a Bio-Inspired Warping Tail for MAV Applications", AIAA, (2010)
[7] Dominic D. J. Chandar and M. Damodaran, Nanyang Technological University, "Computation of Low Reynolds Number Aerodynamic Characteristics of a Flapping Wing in Free Flight", (2009)
[8] Ria Malhan, Vinod K. Lakshminarayan, James Baeder, Inderjit Chopra, Pierangelo Masarati, Marco Morandinik and Giuseppe Quaranta, University of Maryland, Stanford University, Politecnico di Milano, "CFD-CSD Coupled Aeroelastic Analysis of Flexible Flapping Wings for MAV Applications: Methodology Validation" AIAA 2012-1636, (2012)
[9] Jonathan A. Lichtwardt and David D. Marshall, California Polytechnic State University, "Investigation of the Unsteady Behavior of a Circulation Control Wing Using Computational Fluid Dynamics", AIAA 2011-1041, (2011)
Controls References
[1]Katherine Sarah Shigeoka, The University of Utah, "Velocity and Altitude Control of an Ornithopter Micro Aerial Vehicle", MS, (2007)
[2]Erick Durand, Massachusetts Institute of Technology, "Time Domain Modeling of Unsteady Aerodynamic Forces on a Flapping Airfoil", MS, (1998)
[3] Atilla Yilmaz, "Design and Development of a Flapping Wing Mico Air Vehicle",Design and Development of a Flapping Wing Micro Air Vehicle, MS, (2009)
[4] Ben Parslew, The University of Manchester, "Low Order Modelling of Flapping Wing Aerodynamics for Real-Time Model Based Animation of Flapping Flight", MS, (2005)
[5]Vladislav Gavrilets, Massachusetts Institute of Technology, Avionics Systems Development for Small Unmanned Aircraft", MS, (1998)
[6]John W. Roberts, Massachusetts Institute of Technology, "Motor Learning on a Heaving Plate via Improved-SNR Algorithms", MS, (2009)
[7] David L. Raney and Martin R. Waszak, NASA Langley Research Center, "Biologically Inspired Micro-Flight Research", SAE 2003-01-3042, (2003)
[8] "Nuri Kundak and Bernard Mettler, University of Minnesota, "Experimental Framework for Evaluating Autonomous Guidance and Control Algorithms for Agile Aerial Vehicles, (2007)
[9] Matt Burkhalter, Aisha Grieme, Ben Harris, Matt Martin, Anid Monsur, Jake Pratt, Kaela Rasmussen and Chris Skaggs, Iowa State University, “FLAPFLAP-1-SP10”, technical report, (2010)
[10] Travis J. Higgs, Air Force Institute of Technology, Air University, "Modeling, Stability, and Control of a Rotatable Tail on a Micro Air Vehicle", MS, (2005)