Lubrication theory and high Reynolds number flow prep for midterm and final
https://docs.google.com/forms/d/1vgj1gQnYf-rMEnK7aEy03CUu7O7DlzPt4ZZaxBGqsDs/viewform
Midterm Number 2:
http://www.pearsonhighered.com/samplechapter/0137398972.pdf
Flat plate is pulled through a wall
http://pelagiaresearchlibrary.com/advances-in-applied-science/vol3-iss3/AASR-2012-3-3-1472-1481.pdf
http://www.see.ed.ac.uk/~johnc/teaching/fluidmechanics4/2003-04/fluids9/2-dboundary.html
advanced freshman
http://maecourses.ucsd.edu/~sarkar/jim_rohr/mae101b-S2006/
New Homework!!
22.1 (B) Find the pressure drop versus flow rate relation for steady flow in a slot with width given by h = ho + A*sin(2*pi*x/L), where
A/ho is small.
22.2 (B) Consider a V-shaped wedge as in Fig. 22.6, where U= 0. Allow for a squeeze film motion V(t). What is the Reynolds equation for this
situation? If the pressure at the left end is Po. Find the pressure distribution.
Deriving the Re equation
http://www.math.udel.edu/~pelesko/Teaching/Math512_Fall_2005/Milestone5(final).pdf
http://rotorlab.tamu.edu/me626/Notes_pdf/Notes02_App_1D_bearings.pdf
22.7 (A) Let the channel of section 22.2 be porous on the upper as well as the lower wall. Solve the problem for this configuration.
#21.1 (A) What is teh ratio of P** to P*?
page 572, nondimensional P** = (P-Po)/(uU/L) = (P-Po) * Re / (1/2*rho*V^2) =
P* = (P-Po)/(1/2*rho*V^2)
P** / P* = Re
#21.2 (A) Prove that the vorticity flux, n * grad Omega through any closed surface is zero when re--> 0.
1. http://en.wikipedia.org/wiki/Solenoidal_vector_field
2. http://www.mech.utah.edu/~pardyjak/me6700/vorticity.pdf
3. http://www.princeton.edu/~lam/SHL/MAE533w11.pdf good!!
Spherical Coordinates
https://moodle.polymtl.ca/pluginfile.php/110390/mod_resource/content/0/Autres_Documents/Derivation_for_Spherical_Co-ordinates.pdf
Properties of Bessel function
http://walet.phy.umist.ac.uk/2C1/Notes/node48_mn.html
Lecture 2/5/13
unsteady modified bessel function of first kind solutions
unsteady diffusion in a cylinder
http://chemeng.iisc.ernet.in/kumaran/courses/TP_chapter3.pdf
Greens function, laplace transforms, examples
http://www.ewp.rpi.edu/hartford/~wallj2/CHT/Notes/ch05.pdf
HW 3 Fluid Mechanics Problems:
Prob 7.8
------> 7.5 http://pubs.acs.org/doi/pdf/10.1021/i160045a006
http://www.owlnet.rice.edu/~ceng501/Chap8.pdf
http://www2.ucy.ac.cy/~georgios/courses/mas483/files/ggbook.pdf
Prob 7.9
http://www2.ucy.ac.cy/~georgios/courses/mas483/files/ggbook.pdf
Prob 7.11
http://demonstrations.wolfram.com/AdjacentFlowOfTwoImmiscibleFluids/
http://en.wikipedia.org/wiki/Vector_calculus_identities
The curl of the gradient of any scalar field is always the zero vector:
I put the book chapter I wrote in "Content" on the Blackboard. There are extensive coverage on boundary and interface conditions in the chapter, which will be useful for this week's lectures.
Dr. Chen
Unit Circle
http://www.regentsprep.org/Regents/math/algtrig/ATT5/unitcircle.htm
Fluid Mechanics book on radial flow, vtheta =0
Purely radial flow
http://instructional1.calstatela.edu/cwu/me408/Slides/PotentialFlow/PotentialFlow.htm
Continuity equation
http://pleasemakeanote.blogspot.com/2009/02/8-derivation-of-continuity-equation-in.html
Wolfram
http://reference.wolfram.com/mathematica/ref/D.html
Partial deriv of integrals
http://mathworld.wolfram.com/LeibnizIntegralRule.html
http://www.scribd.com/doc/54229636/Panton-Incompressible-Flow-Solutions-ch-01-06
http://www.math.ucsd.edu/~lindblad/20e/20e.html#review
Dr. Chen office hours-
Tue/Thu 3-5PM. ERC 361.
https://webapp4.asu.edu/myasu/
Polar Decomposition
http://en.wikiversity.org/wiki/Continuum_mechanics/Polar_decomposition
Scalar Multiplication
http://physics.info/vector-multiplication/
Quiz Time