A Short description of project:
Micro air vehicle (MAV) design has received considerable attention because of the potential such vehicles offer for (stealthy) intelligence gathering, environment mapping, search and rescue, etc.. In this project, Students will leverage the work of prior students to develop a (roughly palm-sized) bumble-bee like MAV. Such a flapping wing MAV can offer significant enhanced maneuverability compared with fixed- and rotary-wing designs. This will involve conducting vehicle trade studies within MATLAB/Simulink. An ASU wind tunnel is available for characterizing lift-drag properties of the vehicle. Computational fluid dynamics (CFD) simulation with ANSYS-FLUENT may be used to validate wind tunnel lift-drag properties of the vehicle's wing. A 3D printer will be used (in part) to manufacture the vehicle. 3D printing is revolutionizing rapid prototyping and computer-aided design manufacturing in many fields.
K-e Turbulent model CFD Simulation over our bumblebee MAV wing
Work we did in Fall 2013:
https://sites.google.com/a/asu.edu/michael-thompson/projects/summer-mav-2013
Work we did in Spring 2013:
A list of over 300 references collected in MAVs/NAVs
Team meetings on doodle link:
You have initiated a poll "MAV Research" at Doodle. The link to your poll is:
http://doodle.com/2vaqaxe76qz5umdx
AIAA, we submitted our paper to this conference
http://www.aiaa.org/propulsionenergy2014/
We ran our Bumblebee Wing in the ASU Windtunnel. The asymmetric wing attached to the stinger device can be seen below.
We measured the aerodynamic forces on the wing and plotted it in matlab. We also compated our aerodynamic plots with other Micro Air Vehicle aerodynamic plots.
To obtain the plots above run the wind tunnel matlab code below:
clear
clc
%
%%Windtunnel data loading
%
% Test1=load('C:\Users\p2admin\Documents\MAV_WIng\12_17_13_mav_wind_test\StallAngle_12_velocity_two_Bumblebee.txt');
% Lift (N) , Drag (N), Temperature (K) , Dynamic Pressure (Pa), Ambient Pressure (Pa), Angle of attack; Re; Velocity (m/s)
%
% -0.15 0.24 301.47 93.98 97500.00 -10.00 62837.74 12.92
% -0.11 0.23 301.26 92.88 97500.00 -9.00 62513.25 12.84
% -0.09 0.22 301.41 93.67 97500.00 -8.00 62761.03 12.90
% -0.04 0.22 301.22 93.92 97500.00 -7.00 62806.46 12.90
% -0.00 0.22 301.16 93.69 97500.00 -6.00 62771.72 12.89
% 0.06 0.21 300.92 93.48 97500.00 -5.00 62725.18 12.86
% 0.10 0.20 300.90 93.20 97500.00 -4.00 62759.30 12.86
% 0.14 0.20 301.18 94.38 97500.00 -3.00 62964.72 12.93
% 0.17 0.21 301.28 94.17 97500.00 -2.00 62817.38 12.90
% 0.20 0.21 301.36 93.76 97500.00 -1.00 62801.61 12.91
% 0.21 0.22 301.44 94.52 97500.00 0.00 62888.40 12.93
% 0.25 0.21 301.41 94.04 97500.00 1.00 62841.71 12.92
% 0.27 0.21 301.34 93.91 97500.00 2.00 62742.18 12.89
% 0.29 0.22 301.27 93.89 97500.00 3.00 62776.19 12.89
% 0.32 0.22 301.23 93.56 97500.00 4.00 62683.34 12.87
% 0.33 0.22 301.05 93.09 97500.00 5.00 62620.93 12.85
% 0.35 0.23 300.87 93.87 97500.00 6.00 62793.04 12.87
% 0.36 0.22 301.13 92.98 97500.00 7.00 62670.78 12.86
% 0.39 0.23 301.44 93.04 97500.00 8.00 62548.05 12.86
% 0.42 0.24 301.53 93.53 97500.00 9.00 62591.49 12.88
% 0.43 0.24 301.56 93.44 97500.00 10.00 62598.30 12.88
% 0.44 0.24 301.65 94.09 97500.00 11.00 62686.75 12.90
% 0.46 0.24 301.80 93.74 97500.00 12.00 62650.48 12.91
% 0.45 0.25 301.70 94.42 97500.00 13.00 62937.97 12.96
% 0.46 0.25 301.34 93.28 97500.00 14.00 62558.93 12.86
% 0.48 0.26 301.10 93.87 97500.00 15.00 62811.79 12.89
% 0.49 0.26 301.29 94.64 97500.00 16.00 63053.44 12.95
% 0.49 0.26 301.44 92.90 97500.00 17.00 62368.69 12.82
% 0.49 0.27 301.55 92.92 97500.00 18.00 62434.92 12.84
% 0.48 0.28 301.50 92.91 97500.00 19.00 62460.80 12.85
% 0.48 0.28 301.53 93.22 97500.00 20.00 62543.61 12.87
% 0.47 0.28 301.47 93.26 97500.00 21.00 62594.77 12.87
% 0.47 0.28 301.45 93.56 97500.00 22.00 62628.46 12.88
% 0.47 0.28 301.43 93.39 97500.00 23.00 62485.63 12.85
% 0.47 0.28 301.35 93.86 97500.00 24.00 62750.96 12.90
% 0.45 0.29 301.30 93.19 97500.00 25.00 62590.27 12.86
% L=Test1(:,1);
% D=Test1(:,2);
% aoa=Test1(:,6);
%
% Windtunnel Lift and drag Force Plot vs AOA
%
figure(1)
Lift=[-0.15 -0.11 -0.09 -0.04 0 0.06 0.1 0.14 0.17 0.2 0.21 0.25 0.27 0.29 0.32 0.33 0.35 0.36 0.39 0.42 0.43 0.44 0.46 0.45 0.46 0.48 0.49 0.49 0.49 0.48 0.48 0.47 0.47 0.47 0.47 0.45]
Drag=[0.24 0.23 0.22 0.22 0.22 0.21 0.2 0.2 0.21 0.21 0.22 0.21 0.21 0.22 0.22 0.22 0.23 0.22 0.23 0.24 0.24 0.24 0.24 0.25 0.25 0.26 0.26 0.26 0.27 0.28 0.28 0.28 0.28 0.28 0.28 0.29]
Temperature=[301.47 301.26 301.41 301.22 301.16 300.92 300.9 301.18 301.28 301.36 301.44 301.41 301.34 301.27 301.23 301.05 300.87 301.13 301.44 301.53 301.56 301.65 301.8 301.7 301.34 301.1 301.29 301.44 301.55 301.5 301.53 301.47 301.45 301.43 301.35 301.3]
Dynamic_Pressure=[93.98 92.88 93.67 93.92 93.69 93.48 93.2 94.38 94.17 93.76 94.52 94.04 93.91 93.89 93.56 93.09 93.87 92.98 93.04 93.53 93.44 94.09 93.74 94.42 93.28 93.87 94.64 92.9 92.92 92.91 93.22 93.26 93.56 93.39 93.86 93.19]
Ambient_Pressure=[97500 97500 97500 97500 97500 97500 97500 97500 97500 97500 97500 97500 97500 97500 97500 97500 97500 97500 97500 97500 97500 97500 97500 97500 97500 97500 97500 97500 97500 97500 97500 97500 97500 97500 97500 97500]
Angle_of_attack=[-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25]
Re=[62837.74 62513.25 62761.03 62806.46 62771.72 62725.18 62759.3 62964.72 62817.38 62801.61 62888.4 62841.71 62742.18 62776.19 62683.34 62620.93 62793.04 62670.78 62548.05 62591.49 62598.3 62686.75 62650.48 62937.97 62558.93 62811.79 63053.44 62368.69 62434.92 62460.8 62543.61 62594.77 62628.46 62485.63 62750.96 62590.27]
Velocity=[12.92 12.84 12.9 12.9 12.89 12.86 12.86 12.93 12.9 12.91 12.93 12.92 12.89 12.89 12.87 12.85 12.87 12.86 12.86 12.88 12.88 12.9 12.91 12.96 12.86 12.89 12.95 12.82 12.84 12.85 12.87 12.87 12.88 12.85 12.9 12.86]
hold on
plot(Angle_of_attack,Lift,'r',Angle_of_attack,Drag,'b','Linewidth',5)
grid on
title('AR = 4.2, Bumblebee MAV Wing Aerodynamics','FontWeight','bold'); %red= reversed
ylabel('Lift and drag force [N]')
xlabel('AoA [deg]');
axis([-10 26 -.2 .6])
legend('Windtunnel lift force', 'Windtunnel drag force','Location', 'NorthEast')
legend('Location','north')
img = imread('Wing.jpg');
min_x = 10;
max_x = 25;
min_y = -.1;
max_y = 0.2;
imagesc([min_x max_x], [min_y max_y], flipdim(img,1));
set(gca,'ydir','normal');
text(16,0.52,...
'\downarrow Stall Angle',...
'FontSize',13,'FontWeight','bold')
%
%%Paramaters of the bumblebee wing
%
Span = 0.4001 % m, span of the bumblebeewing
Chordlength=0.08 %m, chord length of bumblebee wing
Area = 0.018 %m^2, area of bumblebee wing
%
% Calculate lift coefficient
%
for i = 1:36
Coeff_lift(i)=Lift(i)/(Dynamic_Pressure(i)*Area)
i+1
end
%
% Calculate drag coefficient
%
for i = 1:36
Coeff_drag(i)=Drag(i)/(Dynamic_Pressure(i)*Area)
i+1
end
%
% Windtunnel Cl vs cd Plot vs AOA
%
figure(2)
plot(Angle_of_attack,Coeff_lift,'r',Angle_of_attack,Coeff_drag,'b','Linewidth',5)
title('AR = 4.2, Bumblebee MAV Wing Aerodynamics','FontWeight','bold');
ylabel('Lift and drag Coefficient')
xlabel('AoA [deg]');
% axis([-15 26 -.2 .35])
grid on
hold on
legend('Windtunnel lift Coefficient', 'Windtunnel drag Coefficient','Location', 'NorthEast')
legend('Location','north')
img = imread('Wing.jpg');
min_x = 5;
max_x = 15;
min_y = -.2;
max_y = 0;
imagesc([min_x max_x], [min_y max_y], flipdim(img,1));
set(gca,'ydir','normal');
text(16,0.52,...
'\downarrow Stall Angle',...
'FontSize',13,'FontWeight','bold')
%
% Windtunnel Drag polar cl vs cd
%
figure(3)
plot(Coeff_drag,Coeff_lift,'k','Linewidth',5)
title('AR = 4.2, Bumblebee MAV Wing Aerodynamics','FontWeight','bold');
ylabel('Cl')
xlabel('Cd');
% axis([-15 26 -.2 .35])
grid on
hold on
legend('Re=60,000, Bumblebee MAV Wing','Location', 'NorthEast')
legend('Location','north')
img = imread('Wing.jpg');
min_x = 0.15;
max_x = 0.17;
min_y = 0;
max_y = 0.1;
imagesc([min_x max_x], [min_y max_y], flipdim(img,1));
set(gca,'ydir','normal');
text(16,0.52,...
'\downarrow Stall Angle',...
'FontSize',13,'FontWeight','bold')
%
% Digitized life coeff Plots overlayed with Bumblebee Plots
%
figure(4)
%
% Digitized Data from http://www3.nd.edu/~mav/auvsi/torres.htm
%
% http://www3.nd.edu/~mav/auvsi/torres.htm
angleofattack=[-15.6 -14.6 -13.2 -11.6 -9.62 -8.89 -7.67 -6.57 -4.12 -3.02 -2.05 -.950 .275 1.62 2.35 3.57 4.19 5.78 7.0 8.21 9.18 11.0 12.6 14.3 15.4 17.0 19.2];
cl=[-.790 -.703 -.607 -.511 -.441 -.389 -.319 -.249 -.162 -.0742 .0131 .0568 .109 .162 .266 .354 .415 .485 .537 .581 .651 .729 .764 .712 .694 .659 .651];
plot(Angle_of_attack,Coeff_lift,'r',angleofattack,cl,'b','Linewidth',3)
title('Bumblebee MAV Wing vs Low aspect ratio wing lift coeff.','FontWeight','bold');
ylabel('Lift Coefficient')
xlabel('AoA [deg]');
legend('AR = 4.2,Bumblebee Wing', 'AR=2, Low aspect ratio wing','Location', 'NorthEast')
legend('Location','north')
grid on
% text(8,0.15,...
% '\uparrow Bumblebee MAV',...
% 'FontSize',13,'FontWeight','bold')
% text(-7,-0.4,'\leftarrow Low Aspect Ration MAV ',...
% 'FontSize',13,'FontWeight','bold')
%
% Digitized Drag coeff. Plots overlayed with Bumblebee Plots
%
figure(5)
%
% Digitized Data from http://www3.nd.edu/~mav/auvsi/torres.htm
%
% alpha_d=[-16.3 -15.3 -14.4 -12.7 -11.3 -8.94 -6.25 -4.29 -1.84 .132 2.10 4.70 6.79 9.14 11.2 13.2 15.5];
% cd_AR1=[.267 .241 .220 .165 .115 .0603 .0288 .0262 .0262 .0445 .0838 .165 .220 .280 .335 .369 .432];
% plot(alpha_d,cd_AR1)
%
% Digitized Data from http://www3.nd.edu/~mav/auvsi/torres.htm
%
alpha_Ar2=[-16.6 -15.9 -14.5 -12.9 -11.7 -8.85 -5.69 -1.81 2.77 5.12 6.54 8.66 10.5 12 13.6 14.9 15.9 17.2];
cd_Ar2=[.217 .196 .151 .116 .0742 .0386 .0148 .0237 .0564 .107 .160 .228 .294 .380 .442 .507 .581 .638];
plot(Angle_of_attack,Coeff_drag,'r',alpha_Ar2,cd_Ar2,'b','Linewidth',3)
title('Bumblebee MAV Wing vs Low aspect ratio wing drag coeff.','FontWeight','bold');
ylabel('Drag Coefficient')
xlabel('AoA [deg]');
legend('AR = 4.2,Bumblebee Wing', 'AR=2, Low aspect ratio wing','Location', 'NorthEast')
% axis([-19 25 -.5 .6])
legend('Location','north')
grid on
% text(-10,0.2,...
% '\downarrow Bumblebee MAV',...
% 'FontSize',13,'FontWeight','bold')
% text(-15,0,'\uparrow Low Aspect Ration MAV',...
% 'FontSize',13,'FontWeight','bold')
%
% Drag polar plots Plots overlayed with Bumblebee Plots
%
figure(6)
cl=[-.0895 .0712 .265 .409 .570 .904 1.04 1.19 1.13 1.09 .927];
cd=[ .0927 .0856 .0905 .131 .194 .432 .606 .831 .960 1.11 1.12];
plot(Coeff_drag,Coeff_lift,'k',cd,cl,'r','Linewidth',3)
legend('Re =60,000, Bumblebee MAV Wing','Re=90,000, Colorado MAV','KUMAV','Extra260 MAV')
axis([-.2 1.4 0 1.2])
hold on
%
% %Digitization of the KUMAV
% %CL & Angle of attack
%
% aoa_kumav=[-0.08650519 4.584775 9.948097 14.792388 19.982698 24.740484 29.84429];
% cl_kumav=[0.13745454 0.30036363 0.5090909 0.7432727 0.9570909 1.1556363 1.2523637];
%
%
% %Cd & Angle of attack
% aoa_kumav1=[0 5.075188 10.150376 15.319549 20.112782 25.093985];
% cd_kumav=[0.014685315 0.044055942 0.073426574 0.17622377 0.26923078 0.4013986] ;
%
% %Cd & Cl
cl_kumav2=[0.13745454 0.30036363 0.5090909 0.7432727 0.9570909 1.1556363];
cd_kumav2=[0.014685315 0.044055942 0.073426574 0.17622377 0.26923078 0.4013986];
%
% figure(1)
% plot(aoa_kumav,cl_kumav)
% axis([0 25 0 1.4])
% xlabel('AOA')
% ylabel('cl')
% title('CL vs AOA')
%
% figure(2)
% plot(aoa_kumav1,cd_kumav)
% %axis([0 25 0 1.4])
% xlabel('AOA')
% ylabel('cd')
% title('CD vs AOA')
plot(cd_kumav2,cl_kumav2,'y','Linewidth',3)
%
% %
% % Digitized data from extra260 MAV
% %
cd_extra260=[ 0.05235205 0.05842185 0.07132018 0.09635812 0.13125949 0.1737481]
% clcd_extra260=[ -0.0038022813 0.09505703 0.20342205 0.3041825 0.3973384 0.5]
% plot( cd_extra260,clcd_extra260)
% xlabel('Cd')
% ylabel('Cl')
% title('Aerodynamics of Extra260 MAV')
% legend('Polar drag')
%
cl_extra260=[ 0.015179419 0.10635086 0.19559996 0.2886368 0.37789539 0.47097018]
% aoa_extra260=[ 0.22254325 2.3096635 4.1716027 6.032788 7.969913 10.131843]
% figure(22)
% plot(aoa_extra260,cl_extra260)
% xlabel('AoA')
% ylabel('Cl')
% title('Aerodynamics of Extra260 MAV')
% legend('cl')
% axis([0 11 0 1])
plot(cd_extra260,cl_extra260,'g','Linewidth',3)
xlabel('CD')
ylabel('CL')
title('Polar drag')
legend('Polar drag')
legend('Re =60,000, Bumblebee MAV Wing','Re=90,000, Colorado MAV','KUMAV','Extra260 MAV')
legend('Location','north')
grid on
% text(0.15,0.6,...
% '\leftarrow KUMAV MAV',...
% 'FontSize',13,'FontWeight','bold')
% text(0.4,0.8,...
% '\leftarrow Low aspect ratio MAV ',...
% 'FontSize',13,'FontWeight','bold')
% text(.2,0.4,...
% '\leftarrow Extra260 MAV',...
% 'FontSize',13,'FontWeight','bold')
% text(.17,0.2,...
% '\leftarrow Bumblebee MAV',...
% 'FontSize',13,'FontWeight','bold')
%
% Lift over drag vs AOA- Efficiency Plots
%
figure(7)
efficiency = Lift./Drag
%
% Colorado paper aero efficiency L/D vs AOA
%
aoa_CMAV=[-4.75 -3.56 -1.98 -.0396 1.78 3.47 5.25 7.23 9.70 12.1 14.2 16.1 18.9];
m_CMAV=[-1.01 -.423 .292 .989 1.72 2.47 3.04 3.17 3.24 3.07 2.96 2.75 2.55];
plot(Angle_of_attack,efficiency,'b',aoa_CMAV,m_CMAV,'r-','Linewidth',3)
grid on
title('Aerodynamic Efficiency');
xlabel('AoA')
ylabel('L/D');
legend('Bumblebee MAV Wing','Colorado MAV','Location', 'NorthEast')
axis([-15 20 -1 4])
legend('Location','north')
% text(-15,1,...
% 'Bumblebee MAV \rightarrow ',...
% 'FontSize',13,'FontWeight','bold')
% text(-10,2,...
% 'Colorado MAV \rightarrow',...
% 'FontSize',13,'FontWeight','bold')
Stall angle always happens at the same AOA.