裾の重い種個体数分布 (Species abundance distribution (SAD) shows lognominal)
テント型の対数成長率分布 (Log growth-rate distribution)
指数2のテイラー則 (Taylor's power law)
スケーリング則 (Scaling relationships)
Peters, R. H. (1983). The Ecological Implications of Body Size. Cambridge, UK: Cambridge University Press.
Niklas, K. J. (1994). Plant Allometry. Chicago, IL: University of Chicago.
Wiesenfeld, K. (2001). Scaling laws. Am. J. Phys. 69,938-942.
Brown, J. H. and West, G. B. (2000). Scaling in Biology. New York: Oxford University Press.
Brown, J. H., Gupta, V. K., Li, B.-L., Milne, B. T., Restrepo,C. and West, G. B. (2002). The fractal nature of nature:power laws, ecological complexity and biodiversity. Phil. Trans. R. Soc. Lond. B 357,619-626.
Chave, J. and Levin, S. (2003). Scale and scaling in ecological and economic systems. Environ. Resource Econ. 26,527-557.
Hill number
Hill, M. O. (1973). "Diversity and evenness: a unifying notation and its consequences". Ecology. 54 (2): 427–432. Bibcode:1973Ecol...54..427H. doi:10.2307/1934352. JSTOR 1934352.
Godsoe, W., Murray, R., & Iritani, R. (2023). Species interactions and diversity: a unified framework using Hill numbers. Oikos, 2023(3), e09282.
Shannon's index
Simpson's index
[Reference]
Borda-de-Água, L., Neves, M.M., Quoss, L. et al. Modelling the species-area relationship using extreme value theory. Nat Commun 16, 4045 (2025). https://doi.org/10.1038/s41467-025-59239-7