Rapid (contemporary) evolution
The interface between ecology and evolution
When the short time-scale evolution synchronizes with the time-scale of population & community dynamics dynamics, evolution alter ecological outcomes that previous theories expected. I suggests two points in eco-evolutionary dynamics.
- Change in outcomes predicted in a purely ecological model
- Change in evolutionary trajectories due to population dynamics
What is a fuel of rapid evolution?
Rapid evolution can be promoted by four factors (relatively important from first one):
- Standing genetic variation
- Selection
- Mutation
De Novo mutation
- Gene flow
Adaptive introgession
Migration load
- Hereditability
< References >
- Standing genetic variation
Barrett, R. D., & Schluter, D. (2008). Adaptation from standing genetic variation. Trends in ecology & evolution, 23(1), 38-44.
Kersten, S., Chang, J., Huber, C. D., Voichek, Y., Lanz, C., Hagmaier, T., ... & Rabanal, F. A. (2023). Standing genetic variation fuels rapid evolution of herbicide resistance in blackgrass. Proceedings of the National Academy of Sciences, 120(16), e2206808120.
Chaturvedi, A., Zhou, J., Raeymaekers, J. A., Czypionka, T., Orsini, L., Jackson, C. E., ... & De Meester, L. (2021). Extensive standing genetic variation from a small number of founders enables rapid adaptation in Daphnia. Nature Communications, 12(1), 4306.
- Selection
- Mutation
- Gene flow
Savolainen, O., Pyhäjärvi, T., & Knürr, T. (2007). Gene flow and local adaptation in trees. Annu. Rev. Ecol. Evol. Syst., 38, 595-619.
Aitken, S. N., & Whitlock, M. C. (2013). Assisted gene flow to facilitate local adaptation to climate change. Annual review of ecology, evolution, and systematics, 44, 367-388.
- Hereditability
Strong vs weak selection
Rapid evolution are usually expressed by the quantitative genetic model under an assumption of weak selection. However, in nature, it is suggested that strong selection drive rapid evolution. May we use conventional evolutionary model to derive rapid evolution?
< References >
Cortez, M. H., & Weitz, J. S. (2014). Coevolution can reverse predator–prey cycles. Proceedings of the National Academy of Sciences, 111(20), 7486-7491.
Morita, K., & Yamamichi, M. (2024). Character displacement or priority effects: immigration timing can affect community assembly with rapid evolution. Proceedings B, 291(2035), 20242145.
How can "intraspecific variation" affect coexistence?
< References >
Des Roches, S., Post, D. M., Turley, N. E., Bailey, J. K., Hendry, A. P., Kinnison, M. T., ... & Palkovacs, E. P. (2018). The ecological importance of intraspecific variation. Nature ecology & evolution, 2(1), 57-64.
Hausch, S., Vamosi, S. M., & Fox, J. W. (2018). Effects of intraspecific phenotypic variation on species coexistence. Ecology, 99(6), 1453-1462.
Hart, S. P., Schreiber, S. J., & Levine, J. M. (2016). How variation between individuals affects species coexistence. Ecology letters, 19(8), 825-838.
Lichstein, J. W., Dushoff, J., Levin, S. A., & Pacala, S. W. (2007). Intraspecific variation and species coexistence. The American Naturalist, 170(6), 807-818.
Eco-evolutionary outcomes
[Review]
Govaert, L., Fronhofer, E. A., Lion, S., Eizaguirre, C., Bonte, D., Egas, M., ... & Matthews, B. (2019). Eco‐evolutionary feedbacks—Theoretical models and perspectives. Functional Ecology, 33(1), 13-30.
- Within species
Evolutionary rescue
< References >
[Review]
Bell, G. (2017). Evolutionary rescue. Annual Review of Ecology, Evolution, and Systematics, 48(1), 605-627.
Carlson, S. M., Cunningham, C. J., & Westley, P. A. (2014). Evolutionary rescue in a changing world. Trends in ecology & evolution, 29(9), 521-530.
[Evolution of quantitative traits]
Uecker, H., Otto, S. P., & Hermisson, J. (2014). Evolutionary rescue in structured populations. The American Naturalist, 183(1), E17-E35.
Osmond, M. M., & De Mazancourt, C. (2013). How competition affects evolutionary rescue. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1610), 20120085.
Klausmeier, C. A., Osmond, M. M., Kremer, C. T., & Litchman, E. (2020). Ecological limits to evolutionary rescue. Philosophical Transactions of the Royal Society B, 375(1814), 20190453.
Shibasaki, S., & Yamamichi, M. (2024). The double-edged effect of environmental fluctuations on evolutionary rescue. bioRxiv, 2024-08.
[Population genetics]
Orr, H. A., & Unckless, R. L. (2014). The population genetics of evolutionary rescue. PLoS genetics, 10(8), e1004551.
Uecker, H., & Hermisson, J. (2016). The role of recombination in evolutionary rescue. Genetics, 202(2), 721-732.
Stelkens, R. B., Brockhurst, M. A., Hurst, G. D., & Greig, D. (2014). Hybridization facilitates evolutionary rescue. Evolutionary applications, 7(10), 1209-1217.
Evolutionary suicide
< References >
[Review]
Parvinen, K. (2005). Evolutionary suicide. Acta biotheoretica, 53(3), 241-264.
Ferriere, R., & Legendre, S. (2013). Eco-evolutionary feedbacks, adaptive dynamics and evolutionary rescue theory. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1610), 20120081.
[Adaptive dynamcis]
Gyllenberg, M., & Parvinen, K. (2001). Necessary and sufficient conditions for evolutionary suicide. Bulletin of mathematical biology, 63, 981-993.
Gyllenberg, M., Parvinen, K., & Dieckmann, U. (2002). Evolutionary suicide and evolution of dispersal in structured metapopulations. Journal of mathematical biology, 45, 79-105.
Boldin, B., & Kisdi, E. (2016). Evolutionary suicide through a non-catastrophic bifurcation: adaptive dynamics of pathogens with frequency-dependent transmission. Journal of mathematical biology, 72, 1101-1124.
Vitale, C., & Kisdi, E. (2019). Evolutionary suicide of prey: Matsuda and Abrams’ model revisited. Bulletin of mathematical biology, 81(11), 4778-4802.
Suicide or rescue?
< References >
Henriques, G. J., & Osmond, M. M. (2020). Cooperation can promote rescue or lead to evolutionary suicide during environmental change. Evolution, 74(7), 1255-1273.
- Between species
Indirect evolutionary rescue in the predator-prey system
< References >
Yamamichi, M., & Miner, B. E. (2015). Indirect evolutionary rescue: prey adapts, predator avoids extinction. Evolutionary Applications, 8(8), 787-795.
Evolutionary rescue driven by character displacement
< References >
Morita, K., & Yamamichi, M. (2023). How does the magnitude of genetic variation affect ecological and reproductive character displacement?. Population Ecology, 65(4), 220-230.
Evolutionary exclusion (murder)
< References >
Morita, K., Sasaki, A., & Iritani, R. (2024). How can interspecific pollen transfer affect the coevolution and coexistence of two closely related plant species?. bioRxiv, 2024-09.
Rescue or murder?
< References >
Shang, Y., Kasada, M., & Kondoh, M. (2024). Rescue or murder? The effect of prey adaptation to the predator subjected to fisheries. Ecology and Evolution, 14(12), e70336.
Evolutionary double-suicide
< References >
Uchiumi, Y., Sato, M., & Sasaki, A. (2023). Evolutionary double suicide in symbiotic systems. Ecology Letters, 26(1), 87-98.
Eco-evolutionary limit cycle
< References >
Vasseur et al., 2012
Yamamichi et al.,. 2023
Eco-evolutionary stable communities
[Review]