Types of complex communities
Competitive communities
Food web
May's paradigm
Are Specis-rich communities robust to abrupt enviromental changes?: "Catastrophic shifts"
Hubbel's unified neutral theory
Metacommunity theory
Why, and how, multiple stable states can emerge in species-rich ecosystems remain?
[Reference]
Review
Akjouj, I., Barbier, M., Clenet, M., Hachem, W., Maïda, M., Massol, F., ... & Tran, V. C. (2024). Complex systems in ecology: a guided tour with large Lotka–Volterra models and random matrices. Proceedings of the Royal Society A, 480(2285), 20230284.
Aguadé-Gorgorió et al. (2024) Ecol. Lett. shows that Three factors (1. the fraction of initial conditions that reach a stable state without fluctuations (S ) (Beninca et al., 2008; Hu et al., 2022); 2. the number of observed stable states (Ω), and 3. for each of the states in the list, its diversity of surviving species (D) ) are cues to categorize four types of ecological outcomes (1. Local multistability / 2. Mutual exclusion / 3. Global bistability / 4. Clique).
Keywords
Clique: Small subsets of multiple coexisting species in a species-rich community
<Reference>
Aguadé-Gorgorió, G., & Kefi, S. (2024). Alternative cliques of coexisting species in complex ecosystems. Journal of Physics: Complexity.
Aguadé‐Gorgorió, G., Arnoldi, J. F., Barbier, M., & Kéfi, S. (2024). A taxonomy of multiple stable states in complex ecological communities. Ecology Letters, 27(4), e14413.
Hu, J., Amor, D.R., Barbier, M., Bunin, G. & Gore, J. (2022) Emergent phases of ecological diversity and dynamics mapped in microcosms. Science, 378(6615), 85–89.
Beninca, E., Huisman, J., Heerkloss, R., Jöhnk, K.D., Branco, P., Van Nes, E.H. et al. (2008) Chaos in a long-term experiment with a plankton community. Nature, 451(7180), 822–825.
Why do chain lengths tend to be short such as two or three chains?
Present findings
Fragmentation
Migration rate
Network topology
Stability
After a system reach equilibrium, the state of the system cannot change due to internal pressures.
e.g. convergence stability & evolutionary stability in adaptive dynamics theory
Robustness
After a system reach equilibrium, the state of the system cannot change due to the change in parameters.
Resilience
Suppose that after a system reach equilibrium, the state of the system change due to the perturbation. The system can return to the state which exists before the state transition.
Alternative attractor
Säterberg, T., McCann, K. Detecting alternative attractors in ecosystem dynamics. Commun Biol 4, 975 (2021). https://doi.org/10.1038/s42003-021-02471-w
Tan, E., Algar, S.D., Corrêa, D. et al. Network representations of attractors for change point detection. Commun Phys 6, 340 (2023). https://doi.org/10.1038/s42005-023-01463-y
"Reactive systems are those that can initially amplify small perturbations, which can lead to large fluctuations in population sizes" (Yang et al. 2023)
Yang, Y., Coyte, K.Z., Foster, K.R. et al. Reactivity of complex communities can be more important than stability. Nat Commun 14, 7204 (2023). https://doi.org/10.1038/s41467-023-42580-0
Lottery model
[Reference]
Muko, S., & Iwasa, Y. (2000). Species coexistence by permanent spatial heterogeneity in a lottery model. Theoretical Population Biology, 57(3), 273-284.
Rarity:
Rogers, T.L., Johnson, B.J. & Munch, S.B. Chaos is not rare in natural ecosystems. Nat Ecol Evol 6, 1105–1111 (2022). https://doi.org/10.1038/s41559-022-01787-y
Experiment:
Boaretto, B.R.R., Budzinski, R.C., Rossi, K.L. et al. Discriminating chaotic and stochastic time series using permutation entropy and artificial neural networks. Sci Rep 11, 15789 (2021). https://doi.org/10.1038/s41598-021-95231-z
Benincà, E., Huisman, J., Heerkloss, R., Jöhnk, K. D., Branco, P., Van Nes, E. H., ... & Ellner, S. P. (2008). Chaos in a long-term experiment with a plankton community. Nature, 451(7180), 822-825. https://doi.org/10.1038/nature06512
Helmrich, S., Arias, A., Lochead, G. et al. Signatures of self-organized criticality in an ultracold atomic gas. Nature 577, 481–486 (2020). https://doi.org/10.1038/s41586-019-1908-6
Tokita, K., & Yasutomi, A. (2003). Emergence of a complex and stable network in a model ecosystem with extinction and mutation. Theoretical population biology, 63(2), 131-146. https://doi.org/10.1016/S0040-5809(02)00038-2
Shimada, T. A universal transition in the robustness of evolving open systems. Sci Rep 4, 4082 (2014). https://doi.org/10.1038/srep04082
Drossel, B., Higgs, P. G., & McKane, A. J. (2001). The influence of predator–prey population dynamics on the long-term evolution of food web structure. Journal of Theoretical Biology, 208(1), 91-107. https://doi.org/10.1006/jtbi.2000.2203
Species richness versus interaction links
Ings, T. C., Montoya, J. M., Bascompte, J., Blüthgen, N., Brown, L., Dormann, C. F., ... & Woodward, G. (2009). Ecological networks–beyond food webs. Journal of animal ecology, 78(1), 253-269. https://doi.org/10.1111/j.1365-2656.2008.01460.x
Thompson, R. M., Brose, U., Dunne, J. A., Hall, R. O., Hladyz, S., Kitching, R. L., ... & Tylianakis, J. M. (2012). Food webs: reconciling the structure and function of biodiversity. Trends in ecology & evolution, 27(12), 689-697. https://doi.org/10.1016/j.tree.2012.08.005
Carpentier, C., Barabás, G., Spaak, J.W. et al. Reinterpreting the relationship between number of species and number of links connects community structure and stability. Nat Ecol Evol 5, 1102–1109 (2021). https://doi.org/10.1038/s41559-021-01468-2
Nestedness versus modularity
Fortuna, M. A., Stouffer, D. B., Olesen, J. M., Jordano, P., Mouillot, D., Krasnov, B. R., ... & Bascompte, J. (2010). Nestedness versus modularity in ecological networks: two sides of the same coin?. Journal of animal ecology, 811-817. https://doi.org/10.1111/j.1365-2656.2010.01688.x
Analysing ecological networks of species interactions
Delmas, E., Besson, M., Brice, M. H., Burkle, L. A., Dalla Riva, G. V., Fortin, M. J., ... & Poisot, T. (2019). Analysing ecological networks of species interactions. Biological Reviews, 94(1), 16-36.
“Trophic exclusion” principle
Behrenfeld, M.J., O’Malley, R., Boss, E. et al. Phytoplankton biodiversity and the inverted paradox. ISME COMMUN. 1, 52 (2021). https://doi.org/10.1038/s43705-021-00056-6