Diffraction of single silt is a basically problem in optics.
Here considering a wave source wavelength = 300 nm, pass through a single silt with gaps = 1200 nm
%=================狹縫 Slit===========================lengthx=1200e-9; lengthz=100e-9; nindex=1^2;sigma=0;choice='PEC'; %E_Iso,PEC,M_Iso,PMC,E_Model1,M_Model1,EM_Model1gridtype=-1; %xposition=icenter*gdx;yposition=jcenter*gdy;zposition=100*gdz;Iso_Slit(choice,gridtype,nindex,sigma,xposition,zposition,lengthx,lengthz)%=================狹縫 Slit===========================★(Result Analysis):
The NTFF setup at above figure, we checked ☑X-,☑X+,☑Z+
The range X from 200 => 400, Z from 103 => 180
in other words
☑X- range is x=200, Z=103:180
☑X+ range is x=400, Z=103:180
☑Z+ range is x=200:400, Z=180
This will be a ㄇ shape, and then press the【確定】button
To compare the far-field diffraction pattern of FonSinEM and theoretically solution
# Variable RCS_theta is built-in function
figure;plot(scan_theta,sqrt(RCS_theta),'r','linewidth',2.5);hold on;d=1200e-9;angles=linspace(-90,90,180);beta=1/2*2*pi/(lambda0)*d*sin(angles/180*pi);Intensity=abs(sin(beta)./beta);plot(angles,Intensity*max(sqrt(RCS_theta)),'*b','linewidth',0.5);title('\bf\it Far Field','Color','k','VerticalAlignment','bottom')xlabel('\bf theta','FontSize',12,'FontName','Arial','Color','b','VerticalAlignment','middle')ylabel('\bf intensity (a.u.)','FontSize',12,'FontName','Arial','Color','b')legend('FDTD','Analytical Solution') figure;polar(scan_theta'/180*pi,sqrt(RCS_theta),'r');hold on;polar(angles/180*pi,Intensity*max(sqrt(RCS_theta)),'b'); title('\bf\it Polar Plot (theta)','Color','k','VerticalAlignment','bottom')d=1200e-9;b=d;%=================矩形 Brick===========================xstart=icenter*gdx-d/2;xend=icenter*gdx+d/2;ystart=1*gdy;yend=1*gdy;zstart=100*gdz;zend=100*gdz+100e-9;nindex=1^2;sigma=0;choice='PEC'; %E_Iso,PEC,M_Iso,PMC,E_Model1,M_Model1,EM_Model1gridtype=-1; %Iso_Brick(choice,gridtype,nindex,sigma,xstart,xend,ystart,yend,zstart,zend)%=================矩形 Brick=========================== %=================矩形 Brick===========================xstart=1*gdx;xend=icenter*gdx-b-d/2;ystart=1*gdy;yend=1*gdy;zstart=100*gdz;zend=100*gdz+100e-9;nindex=1^2;sigma=0;choice='PEC'; %E_Iso,PEC,M_Iso,PMC,E_Model1,M_Model1,EM_Model1gridtype=-1; %Iso_Brick(choice,gridtype,nindex,sigma,xstart,xend,ystart,yend,zstart,zend)%=================矩形 Brick=========================== %=================矩形 Brick===========================xstart=icenter*gdx+b+d/2;xend=ib*gdx;ystart=1*gdy;yend=1*gdy;zstart=100*gdz;zend=100*gdz+100e-9;nindex=1^2;sigma=0;choice='PEC'; %E_Iso,PEC,M_Iso,PMC,E_Model1,M_Model1,EM_Model1gridtype=-1; %Iso_Brick(choice,gridtype,nindex,sigma,xstart,xend,ystart,yend,zstart,zend)%=================矩形 Brick===========================The NTFF setup at above figure, we checked ☑X-,☑X+,☑Z+
The range X from 30 => 570, Z from 103 => 180
in other words
☑X- range is x=30, Z=103:150
☑X+ range is x=30, Z=103:150
☑Z+ range is x=30:570, Z=150
This will be a ㄇ shape, and then press the【確定】button
To compare the far-field diffraction pattern of FonSinEM and theoretically solution
# Variable RCS_theta is built-in function
figure;plot(scan_theta,sqrt(RCS_theta),'r','linewidth',2.5);hold on;d=1200e-9;distance=2.*d; %兩狹縫中心距離angles=linspace(-90,90,360);beta=1/2*2*pi/(lambda0)*d*sin(angles/180*pi);Intensity=abs(sin(beta)./beta.*cos(pi/(lambda0)*distance*sin(angles/180*pi)));plot(angles,Intensity*max(sqrt(RCS_theta)),'*b', 'MarkerSize',5);title('\bf\it Far Field','Color','k','VerticalAlignment','bottom')xlabel('\bf theta','FontSize',12,'FontName','Arial','Color','b','VerticalAlignment','middle')ylabel('\bf intensity (a.u.)','FontSize',12,'FontName','Arial','Color','b')legend('FDTD','Analytical Solution')figure;polar(scan_theta'/180*pi,sqrt(RCS_theta),'r');hold on;polar(angles/180*pi,Intensity*max(sqrt(RCS_theta)),'b');title('\bf\it Polar Plot (theta)','Color','k','VerticalAlignment','bottom')