Diffraction of single silt is a basically problem in optics.
Here considering a wave source wavelength = 300 nm, pass through a single silt with gaps = 1200 nm
%=================狹縫 Slit===========================
lengthx=1200e-9;
lengthz=100e-9;
nindex=1^2;
sigma=0;
choice='PEC'; %E_Iso,PEC,M_Iso,PMC,E_Model1,M_Model1,EM_Model1
gridtype=-1; %
xposition=icenter*gdx;
yposition=jcenter*gdy;
zposition=100*gdz;
Iso_Slit(choice,gridtype,nindex,sigma,xposition,zposition,lengthx,lengthz)
%=================狹縫 Slit===========================
★(Result Analysis):
The NTFF setup at above figure, we checked ☑X-,☑X+,☑Z+
The range X from 200 => 400, Z from 103 => 180
in other words
☑X- range is x=200, Z=103:180
☑X+ range is x=400, Z=103:180
☑Z+ range is x=200:400, Z=180
This will be a ㄇ shape, and then press the【確定】button
To compare the far-field diffraction pattern of FonSinEM and theoretically solution
# Variable RCS_theta is built-in function
figure;
plot(scan_theta,sqrt(RCS_theta),'r','linewidth',2.5);
hold on;
d=1200e-9;
angles=linspace(-90,90,180);
beta=1/2*2*pi/(lambda0)*d*sin(angles/180*pi);
Intensity=abs(sin(beta)./beta);
plot(angles,Intensity*max(sqrt(RCS_theta)),'*b','linewidth',0.5);
title('\bf\it Far Field','Color','k','VerticalAlignment','bottom')
xlabel('\bf theta','FontSize',12,'FontName','Arial','Color','b','VerticalAlignment','middle')
ylabel('\bf intensity (a.u.)','FontSize',12,'FontName','Arial','Color','b')
legend('FDTD','Analytical Solution')
figure;
polar(scan_theta'/180*pi,sqrt(RCS_theta),'r');
hold on;
polar(angles/180*pi,Intensity*max(sqrt(RCS_theta)),'b');
title('\bf\it Polar Plot (theta)','Color','k','VerticalAlignment','bottom')
d=1200e-9;
b=d;
%=================矩形 Brick===========================
xstart=icenter*gdx-d/2;
xend=icenter*gdx+d/2;
ystart=1*gdy;
yend=1*gdy;
zstart=100*gdz;
zend=100*gdz+100e-9;
nindex=1^2;
sigma=0;
choice='PEC'; %E_Iso,PEC,M_Iso,PMC,E_Model1,M_Model1,EM_Model1
gridtype=-1; %
Iso_Brick(choice,gridtype,nindex,sigma,xstart,xend,ystart,yend,zstart,zend)
%=================矩形 Brick===========================
%=================矩形 Brick===========================
xstart=1*gdx;
xend=icenter*gdx-b-d/2;
ystart=1*gdy;
yend=1*gdy;
zstart=100*gdz;
zend=100*gdz+100e-9;
nindex=1^2;
sigma=0;
choice='PEC'; %E_Iso,PEC,M_Iso,PMC,E_Model1,M_Model1,EM_Model1
gridtype=-1; %
Iso_Brick(choice,gridtype,nindex,sigma,xstart,xend,ystart,yend,zstart,zend)
%=================矩形 Brick===========================
%=================矩形 Brick===========================
xstart=icenter*gdx+b+d/2;
xend=ib*gdx;
ystart=1*gdy;
yend=1*gdy;
zstart=100*gdz;
zend=100*gdz+100e-9;
nindex=1^2;
sigma=0;
choice='PEC'; %E_Iso,PEC,M_Iso,PMC,E_Model1,M_Model1,EM_Model1
gridtype=-1; %
Iso_Brick(choice,gridtype,nindex,sigma,xstart,xend,ystart,yend,zstart,zend)
%=================矩形 Brick===========================
The NTFF setup at above figure, we checked ☑X-,☑X+,☑Z+
The range X from 30 => 570, Z from 103 => 180
in other words
☑X- range is x=30, Z=103:150
☑X+ range is x=30, Z=103:150
☑Z+ range is x=30:570, Z=150
This will be a ㄇ shape, and then press the【確定】button
To compare the far-field diffraction pattern of FonSinEM and theoretically solution
# Variable RCS_theta is built-in function
figure;
plot(scan_theta,sqrt(RCS_theta),'r','linewidth',2.5);
hold on;
d=1200e-9;
distance=2.*d; %兩狹縫中心距離
angles=linspace(-90,90,360);
beta=1/2*2*pi/(lambda0)*d*sin(angles/180*pi);
Intensity=abs(sin(beta)./beta.*cos(pi/(lambda0)*distance*sin(angles/180*pi)));
plot(angles,Intensity*max(sqrt(RCS_theta)),'*b', 'MarkerSize',5);
title('\bf\it Far Field','Color','k','VerticalAlignment','bottom')
xlabel('\bf theta','FontSize',12,'FontName','Arial','Color','b','VerticalAlignment','middle')
ylabel('\bf intensity (a.u.)','FontSize',12,'FontName','Arial','Color','b')
legend('FDTD','Analytical Solution')
figure;
polar(scan_theta'/180*pi,sqrt(RCS_theta),'r');
hold on;
polar(angles/180*pi,Intensity*max(sqrt(RCS_theta)),'b');
title('\bf\it Polar Plot (theta)','Color','k','VerticalAlignment','bottom')