Dipole
(Wavelength) = 1095 nm
Localized Surface Plasmon Resonance
Quadrupole
(Wavelength) = 625 nm
Localized Surface Plasmon Resonance
Sphere_Mie_diameter400nm_metal.zip
https://drive.google.com/open?id=15m0DXK2uKcpYmsZJEdFhIf5WDoU47Sw3
Analytical Solution download :
bhmie_analytical.zip
https://drive.google.com/open?id=1TdyHFRQGLTOWf20DCmPLQbdFijPZmb3x
http://scatterlib.wikidot.com/mie
http://juluribk.com/2013/01/22/electric-field-at-localized-plasmon-resonance-using-meep/
Field pattern analysis examples download:
Sphere_Mie_diameter400nm_metal_1095.zip
https://drive.google.com/open?id=1Rpq971Boki000_BefQF4mu8IJOHxOGY5
Sphere_Mie_diameter400nm_metal_625.zip
https://drive.google.com/open?id=1i-Ro2IgD1dr_zx8dzbTmcmYjN-d6rVyW
Sphere_Mie_diameter400nm_metal_300.zip
https://drive.google.com/open?id=10jZ1VEmXmdH6e499n4AFMbJd69ojlZII
*.FCstd is the save file of FreeCAD
bhmie_analytical.zip
https://drive.google.com/open?id=1TdyHFRQGLTOWf20DCmPLQbdFijPZmb3x
http://scatterlib.wikidot.com/mie
http://juluribk.com/2013/01/22/electric-field-at-localized-plasmon-resonance-using-meep/
Code :
clear all
a=100 ; %The normalization unit used in the simulation
rad=2; % radius of the sphere in normalized units, If a=100 then radius =2*100 nm
resl=10 ; % Normalized Resolution of the simulation domain if resl = 10 and a=100 then the actual resolution in nm is a/resl=100 nm/10=10 nm
fcen=0.3 ; % Central frequency of the source in normalized units if fcen =0.3 then the actual central wavelength is a/fcen =100/0.3=333 nm
df=0.3 ; % Frequency span of the source in normalized units
nfreq=60; % Number of wavelengths in the wavelenth spectrum to calculate the electric field, extinction
sample=10; %
decayby=1e-8 ; % This determines the accuracy. Smaller this value, longer the simation time, but more accurate calculations.
mpirun_bool=1 ; % controls whether computation is on parallel (uses multiple processors on a computer) or serial.
rad=a*rad; % Should be in nanometers.
lam=[200:2:2000]; % Should be in nanometers
[epsr,epsi,N]=LD(lam*1e-9,'Ag','LD');
for k=1:1:length(lam)
x=2*pi*rad/lam(k);
[s1,s2,qext,qsca,qback,gsca]=mie(x,N(k),2);
temp(:,k)=[qsca,qext,qext-qsca];
end
temp=temp';
plot(lam,temp)
xlabel('Wavelength (nm)')
ylabel('Efficiencies')
legend('Scattering','Extinction','Absorption')
temp2=[lam',temp(:,1),temp(:,2),temp(:,3)];
save('analytical.dat','temp2','-ascii')
print('silver_analytical.png','-dpng','-r100')
1. Set the Spectrum Analysis & Wavelength range
2. Check out the source
(Wavelength) = 1095 nm
(Wavelength) = 300 nm for Absorption
Dipole
(Wavelength) = 1095 nm
Localized Surface Plasmon Resonance
Quadrupole
(Wavelength) = 625 nm
Localized Surface Plasmon Resonance
Localized Surface Plasmon Resonance Spectroscopy and Sensing, Katherine A. Willets and Richard P. Van Duyne
https://pdfs.semanticscholar.org/8101/b9e4d794020a8924ef7fec815f3628c47290.pdf
Lumerical FDTD Solution:
Methodology - Fluorescence Enhancement
https://kb.lumerical.com/en/sp_methodology_fluorescence_enhancement.html
Mie Scattering 3D (FDTD)
https://kb.lumerical.com/en/particle_scattering_mie_3d.html