Multi-layers-Normal Incident

中文/English

This is an example of Transmission/Reflection of normal incident to multi layer, and compared with the analytical solutions.

The multi-layer shows in the above left figure, : 100 nm/ 200 nm/ 300 nm, and the refractive index are n= 1.25 / 1.5/ 1.75, respectively




Comparison & Reference:

Define Parameters

1. Selected the simulation dimension.

2. Define total x, y, z length that equal to CAD, and then set a appropriate resolution.

3. Press【建立網格 Cad to Grids (Create)】button to create simulation grids.




A. Define the boundary conditions

B. Press the【創建 (Create)】button => Create the total grid size (Include the boundary condition & add space)



The incident wave is linear polarization in y axis (pis=0) from bottom side(theta =0).

Reflection Spectrum observation : - Z direction

Transmission Spectrum observation : + Z direction

instruction webpage: DFT (Observation Range)



None, press 【創建(Create)】 button




1. Checked the simulation material that will be used

2. Input the builtin function

3. Press the run button to execute the code

4. Checked out the geometries

5. If correct! then Press 【輸出 output】button to output the *.csv files.


the builtin function geometries variable are

gdx is (grid) dx value, gdy = dy. gdz = dz;

ib= X grids, jb= Y grids, kb= Z grids;

icenter= ib/2; jcenter= jb/2; kcenter=kb/2;



Initialize_geometries  % use to initialize all geometries

%=================矩形 Brick===========================
xstart=1*gdx;
xend=ib*gdx;
ystart=1*gdy;
yend=jb*gdy;
zstart=30*gdz;
zend=30*gdz+100e-9;
nindex=1.25^2;
sigma=0;
choice='E_Iso'; %E_Iso,PEC,M_Iso,PMC,E_Model1,M_Model1,EM_Model1
gridtype=-1;    %
Iso_Brick(choice,gridtype,nindex,sigma,xstart,xend,ystart,yend,zstart,zend)
%=================矩形 Brick===========================
%=================矩形 Brick===========================
xstart=1*gdx;
xend=ib*gdx;
ystart=1*gdy;
yend=jb*gdy;
zstart=30*gdz+100e-9;
zend=30*gdz+300e-9;
nindex=1.5^2;
sigma=0;
choice='E_Iso'; %E_Iso,PEC,M_Iso,PMC,E_Model1,M_Model1,EM_Model1
gridtype=-1;    %
Iso_Brick(choice,gridtype,nindex,sigma,xstart,xend,ystart,yend,zstart,zend)
%=================矩形 Brick===========================
%=================矩形 Brick===========================
xstart=1*gdx;
xend=ib*gdx;
ystart=1*gdy;
yend=jb*gdy;
zstart=30*gdz+300e-9;
zend=30*gdz+600e-9;
nindex=1.75^2;
sigma=0;
choice='E_Iso'; %E_Iso,PEC,M_Iso,PMC,E_Model1,M_Model1,EM_Model1
gridtype=-1;    %
Iso_Brick(choice,gridtype,nindex,sigma,xstart,xend,ystart,yend,zstart,zend)
%=================矩形 Brick=========================== 

gdx is grid dx value,here set the resolution at 5 nm,and gdy=gdz=gdx 。X from 1 to boundary ibY from 1 to boundary jb。

The Z direction (thickness)

The first layer is 100 nm, and the incident source is set at Z=21 *gdz position of C.Wave & Observation step.

So, here the first layer Brick geometry is set from Z=30 *gdz, and the Zend is Zstart + 100 nm.

The material choice E_Iso (Electric Isotropic),The relative permittivity (Epsilon_r)。

Epsilon_r=nindex=n^2, (n equal to refractive index)


zstart=30*gdz;
zend=30*gdz+100e-9;
nindex=1.5^2;
sigma=0;
choice='E_Iso';



1. Set the Spectrum Analysis & Wavelength range

2. Check out the source



1. Set the simulation time setp

2. Save parameters

3. Calculation



★(Result Analysis):

頻譜 (Spectrum) : Analysis the spectrum

The comparison of FonSinEM simulation results and analytical solution are shown in below figure., The analytical solution can be obtained by multilayer_p.m, multilayer_s.m in the pdf file

% This program is an example to use thin film model. The design if a
% broadband reflector for the visible region of design.
% Data resource: Figure 4-27 in "Optical thin film"
% initial program
clear all;
close all;
um = 1e-6;
nm = 1e-9;
% define admittance for medium
Air = 1;
Glass = 1.52;
% define the reference wavelength and thickness
lambda_f = 480*nm;
% define visible region of light
lambda = linspace(200,1500,501)*nm;
% define thin film structure
y_inc = Air; % incident medium admittance
y_sub = Air; % substrate medium admittance
theta = 0; % in degree
%d = film thickness
%y = index for d, n-ik 
d=[100*nm;200*nm;300*nm;];
y=[1.25;1.5;1.75;];
%rho= sqrt(R), complex reflection coefficient
%tao= sqrt(T), complex reflection coefficient
% y_inc|y|y_sub 共三層
for ii=1:length(lambda),
[rho(ii),tao(ii),R(ii),T(ii)] =multilayer_s(d,y,y_inc,y_sub,lambda(ii),theta);
end
% plot the result
figure;hold on;
plot(lambda/nm,R*1,'-k','LineWidth',3);
plot(lambda/nm,T*1,'-k','LineWidth',3);
title('A broadband reflector for the visible region');
xlabel('Wavelength(nm)');
ylabel('Reflectance(%)');
%axis([350 850 0 105]);
grid on; 

for ii=1:length(lambda),
[rho2(ii),tao2(ii),R2(ii),T2(ii)] =multilayer_p(d,y,y_inc,y_sub,lambda(ii),theta);
end
% plot the result
figure;hold on;
plot(lambda/nm,R2*1,'-k','LineWidth',3);
plot(lambda/nm,T2*1,'-k','LineWidth',3);
title('A broadband reflector for the visible region');
xlabel('Wavelength(nm)');
ylabel('Reflectance(%)');
%axis([350 850 0 105]);
grid on;