* The date and time are Japan Standard Time (JST).
☟今月の予定 ☟This Month
登録フォーム(Registration form):
https://forms.gle/L8sjFnbFPQZf7GuRA
登録締め切り(deadline for registration):
2025年10月20日(月) 17時
20th October 2025, 17pm
私はドイツのデュッセルドルフの出身です。生まれた町は日本の会社が多くて、住んでいる日本人は8千人ぐらいです。ミュンヘン工科大学の勉強の時、物理学と数学と関係がないものを学びたかったので、日本語を選びました。マスターコースの時名古屋大学の「NUPACE」という留学プログラムを参加しました。もう一つの幸運は、私のアドバイザーであるミュンヘン工科大学の「SPOHN Herbert」先生が日本の研究者と協力していたことです。そのおかげで、九州大学の廣島文生先生の所でポスドクをして、妻と会ったんです。今子供が三人います。2013年から2015年まで「Fields Postdoctoral Fellow」でトロント大学とFields Instituteに過ごして、2015年に東北大学のWPI-AIMRで(任期あり)助教になりました。2018年に(任期あり)准教授に昇進しました。2024年からベルリンの隣のポツダム大学の数学部で数理物理学の終身准教授になりました。私は合計10年ぐらい日本で過ごし、まだ日本の研究者と協力しています。
I was born in Düsseldorf, Germany, which was and still is one of the most important hubs in the world for Japanese living outside of Japan. During my studies at Technical University Munich, I opted to study Japanese, something that was orthogonal to my lectures on physics and mathematics. I spent my fourth year a NUPACE student at Nagoya University where I received excellent Japanese classes. Another stroke of luck was that my diploma and PhD thesis advisor, Herbert Spohn, has excellent connections to Japan, which is why I spent one year as a postdoc at Kyushu University with Fumio Hiroshima. This is when I met my (Japanese) wife with whom I have three children. After two years as a Fields Postdoc at the University of Toronto and the Fields Institute (2013-2015) I accepted a fixed-term position as Assistant Professor in Motoko Kotani's group at Tohoku University's WPI-AIMR in 2015. Later I was promoted to Associate Professor. In 2024 I was appointed as the Chair of Mathematical Physics at University of Potsdam's Institute for Mathematics. Overall I spent close to 10 years in Japan and maintain active collaborations with colleagues in Japan.
A pseudodifferential calculus systematically assigns operators to suitable functions. Many properties of these functions manifest themselves as properties of the operators they define. Moreover, products of pseudodifferential operators are again pseudodifferential operators, which allows us to pull back the operator product to the level of functions. On the level of functions, this so-called Weyl product can be expanded asymptotically in small parameters. This is the starting point for rigorous perturbation theory for pseudodifferential operators, because it enables us to construct operators order-by-order in the perturbation parameter.
In this talk I will explain the advantages of designing pseudodifferential calculi for specific classes of perturbation problems, incorporating e. g. magnetic fields or dissipation into the calculus. I will use concrete problems from mathematical physics as a guide.
研究は国際的な活動であるため、大学は外国人を雇用する。日本は昔から海外の優秀な人材の中で留学プログラムやドクターコースやポスドクなど有名になった。しかし他の国と比べて、外国人は日本の大学で任期なしの永遠のポジションをもらうことは難しい。この発表では外国人が経験した任期なしポジションを見つける妨害を説明する。その上に日本の経験の側面が外国の大学で教授職を見つけるため弱点になる可能性もある。他の国の大学も(その国以外の出身である)外国人が任期なし教授職の希望者は同じ困難に直面する。例えは言語を学ぶことや文化の違いを対処するなどである。外国のスタッフを応援する動力を説明して、私の日本の大学の経験と比べる。大学の教授職の中で外国人もいる利点も記載する。
Research in academia is inherently conducted internationally and universities employ people from all over the world. Japan has had a long, successful history of attracting talent from abroad for student exchange programs or to pursue a PhD or a postdoc. However, compared to other countries it significantly more difficult for non-Japanese to find permanent faculty positions. That puts them at a disadvantage in the long term.
Drawing from my own experience, I will explain some of the obstacles non-Japanese are facing to find permanent faculty positions and which have left them at a disadvantage finding permanent jobs abroad. Many of the challenges they face are very similar: they have to learn a new language and deal with a new culture. I will contrast and compare how other countries are dealing with common issues foreigners face when they start a permanent position such as language, lack of knowledge when it comes to the local culture and how they benefit from a more international staff.
☟次回以降の予定(早い順) ☟Next Schedule (Earliest first)
登録フォーム(Registration form):
https://forms.gle/zHk3RZN6mPrawijC6
登録締め切り(deadline for registration):
11月15日(土)17時
November 15th (Saturday) 17 pm
2007年に東京大学理学部数学科卒業。卒業後は国内のIT企業でソフトウェア開発者として勤務。2015年に数学を学び直すことを決意し、2016年より東京大学大学院・数理科学研究科の修士課程に進学しました。古田幹雄教授の指導の下、2019年に修士号、2022年に博士号(数理科学)を取得。2022年4月より理化学研究所数理創造プログラムの基礎科学特別研究員。2025年4月より同研究所の研究員として勤務し、トポロジーの研究に従事しています。
Graduated from the Department of Mathematics, Faculty of Science, the University of Tokyo, in 2007. After graduation, worked as a software developer at a domestic IT company. In 2015, decided to return to the study of mathematics and entered the Master’s Program at the Graduate School of Mathematical Sciences, the University of Tokyo, in 2016. Under the supervision of Professor Mikio Furuta, obtained a Master’s degree in 2019 and a Doctorate in Mathematical Sciences in 2022. Since April 2022, has been a Special Postdoctoral Researcher at iTHEMS RIKEN. Since April 2025, has been working as a Research Scientist at the same institute, conducting research in topology.
結び目の不変量とその圏化 (Knot invariants and their categorification)
Knot theory is a branch of topology that studies knots, and knot invariants are fundamental tools for distinguishing them. In this talk, I will give an overview of the Jones polynomial, a powerful knot invariant, and Khovanov homology, which was constructed as its categorification.
産業での9年間とアカデミアでの9年間 (9 years in industry, 9 years in academia)
東大理学部数学科を卒業後,IT業界でソフトウェアエンジニアとして過ごした9年間と,その後大学院に進学して研究の道に進むに至った9年間についてお話しします.
I will talk about the nine years I spent working as an engineer in the IT industry after graduating from the Department of Mathematics, Faculty of Science, the University of Tokyo, and the nine years that followed, during which I entered graduate school and pursued a career in research.
Discussion Theme (second part):
数学科を卒業した後のキャリアについて/研究と家庭(育児)の両立について
Career after graduating from the Department of Mathematics / Balancing research and family life (childcare)
登録フォーム(Registration form):
In preparation...
登録締め切り(deadline for registration):
Details are being prepared...
登録フォーム(Registration form):
In preparation...
登録締め切り(deadline for registration):
高校のときは(受験)数学があまり好きではなく、工学部へ。囲碁にハマっており自分より囲碁が強い人工知能を作りたかった。当時の人工知能はまだまだ卵の段階で魅力を見いだせず、機械に考えさせるのではなく、やはり自分が考えたいと思うようになり数学を学び始める。同時にサークル活動にて演劇をやっており、役者か学者か、迷った末に少しだけ学者のほうに才能を感じたので研究者を目指す道へ。とにかく面白いものが好きで、分野にこだわりはなく、正直に言うとそもそも学問でなくてもよい。大学院では3次元双曲幾何学、その後タイヒミュラー理論とそれに関連するランダムウォーク、現在は2次元と3次元の双曲幾何学をつなげる分野に興味を持っている。
In high school, I didn’t particularly enjoy mathematics, so I went on to study engineering. At that time, I was deeply into the game of Go and wanted to create an AI that could play better than I could. However, AI was still in its infancy, and I realized that I was more interested in thinking for myself than in making machines think. That realization led me to study mathematics. At the same time, I was also involved in a theater club, and for a while, I couldn’t decide whether to pursue acting or academia. In the end, I felt I had slightly more talent as a scholar than as an actor, so I chose the research path. I have always been drawn to whatever I find intellectually engaging, regardless of the field, and to be honest, it doesn’t even have to be “academic”. In graduate school, I studied 3-dimensional hyperbolic geometry; later, my interests expanded to Teichmüller theory and related random walks. Currently, I’m fascinated by questions that bridge 2- and 3-dimensional hyperbolic geometry.
2次元、3次元の双曲幾何に関してはさまざまな数値計算が可能であることが知られている。本講演では講演者の博士論文や、最近の研究における数値計算において関連する話題と合わせて紹介する。
A variety of numerical computations can be performed in two- and three-dimensional hyperbolic geometry. In this talk, I will talk about some computations done in my doctoral dissertation and recent research.
工学部など「数学科以外」の学部を卒業し、大学院から数学を始め、数学者として生きている人間は少数派である。大学院時代、ポスドク時代などに気をつけていたことなどについてお話する。
Those who graduated from faculties other than mathematics—such as engineering—and then began studying mathematics in graduate school to become mathematicians are in the minority. In this talk, I will share some thoughts on what I paid attention to during my graduate and postdoctoral years.