* The date and time are Japan Standard Time (JST).
☟今月の予定 ☟This Month
登録フォーム(Registration form):
https://forms.gle/zHk3RZN6mPrawijC6
登録締め切り(deadline for registration):
11月15日(土)17時
November 15th (Saturday) 17 pm
2007年に東京大学理学部数学科卒業。卒業後は国内のIT企業でソフトウェア開発者として勤務。2015年に数学を学び直すことを決意し、2016年より東京大学大学院・数理科学研究科の修士課程に進学しました。古田幹雄教授の指導の下、2019年に修士号、2022年に博士号(数理科学)を取得。2022年4月より理化学研究所数理創造プログラムの基礎科学特別研究員。2025年4月より同研究所の研究員として勤務し、トポロジーの研究に従事しています。
Graduated from the Department of Mathematics, Faculty of Science, the University of Tokyo, in 2007. After graduation, worked as a software developer at a domestic IT company. In 2015, decided to return to the study of mathematics and entered the Master’s Program at the Graduate School of Mathematical Sciences, the University of Tokyo, in 2016. Under the supervision of Professor Mikio Furuta, obtained a Master’s degree in 2019 and a Doctorate in Mathematical Sciences in 2022. Since April 2022, has been a Special Postdoctoral Researcher at iTHEMS RIKEN. Since April 2025, has been working as a Research Scientist at the same institute, conducting research in topology.
結び目の不変量とその圏化 (Knot invariants and their categorification)
Knot theory is a branch of topology that studies knots, and knot invariants are fundamental tools for distinguishing them. In this talk, I will give an overview of the Jones polynomial, a powerful knot invariant, and Khovanov homology, which was constructed as its categorification.
産業での9年間とアカデミアでの9年間 (9 years in industry, 9 years in academia)
東大理学部数学科を卒業後,IT業界でソフトウェアエンジニアとして過ごした9年間と,その後大学院に進学して研究の道に進むに至った9年間についてお話しします.
I will talk about the nine years I spent working as an engineer in the IT industry after graduating from the Department of Mathematics, Faculty of Science, the University of Tokyo, and the nine years that followed, during which I entered graduate school and pursued a career in research.
Discussion Theme (second part):
数学科を卒業した後のキャリアについて/研究と家庭(育児)の両立について
Career after graduating from the Department of Mathematics / Balancing research and family life (childcare)
☟次回以降の予定(早い順) ☟Next Schedule (Earliest first)
登録フォーム(Registration form):
In preparation...
登録締め切り(deadline for registration):
私が数学に興味を持ったのは高校生の時です.穴埋めをしながら定義の意味を考えられる,先生手作りの教科書があり,それを予習するのが楽しく数学が好きになりました.一方で,中高は女子校に通っており,理系は女性が非常に少ないときいて,全く違う環境に進学することに不安も感じていました.実際,数理科学科に進学した際には同学年の女性は私を含めて2人しかおらず,教員や他学年を含めても極端に女性割合が低い状況には戸惑いました.しかし,よい先生や友人をはじめとした周囲の人との関わりから,数学の勉強や研究を続けたいという気持ちを持ち続けることができました.学部4年生の時に出会った力学系理論,特に熱力学形式と呼ばれる統計力学のアイディアに基づいて力学系の不変測度を研究する理論に興味を持っています.博士課程修了後は,半年ずつ国内・海外でのポスドクを経て,現在の大学に就職しました.
I became interested in mathematics when I was in high school. There was a teacher-made textbook that allowed me to think about the meaning of definitions while filling in the blanks, and I enjoyed preparing for it, which made me like mathematics. On the other hand, I attended an all-girls school for both junior and senior high school, and I heard that there were very few women in science tracks, so I was also anxious about entering a completely different environment. In fact, when I progressed to the Department of Mathematical Sciences, there were only two women in the same grade, including myself, and the proportion of women was extremely low even when including faculty and other grades, which was confusing. However, through interactions with good teachers and friends, I was able to maintain my desire to continue studying and researching mathematics. In my fourth year of undergraduate studies, I became interested in dynamical systems theory, particularly the theory researching invariant measures of dynamical systems based on the ideas of statistical mechanics called the thermodynamic formalism. After completing my doctoral program, I worked as a postdoc for six months each in Japan and abroad before joining my current university.
力学系とは決定論的な時間発展の法則に従う系の数理モデルです.複雑な振る舞いを示す力学系に対しては個々の軌道を追跡するよりもむしろ,長時間平均などの統計的な性質を見るために,不変確率測度を調べることが有効になります.本講演では,統計物理学とのアナロジーを用いて力学系上の不変確率測度を調べる,熱力学形式を紹介します.
A dynamical system is a mathematical model of a system underling deterministic laws of time evolution. For dynamical systems exhibiting complex behavior, rather than tracking individual trajectories, it becomes effective to examine invariant probability measures to observe statistical properties such as long-time averages. In this talk, we introduce a thermodynamic formulation for studying invariant probability measures on dynamical systems, using analogies with statistical physics.
女子中高から男性が9割以上の学科に進学という極端な男女比の変化を経験して感じた「ステレオタイプ脅威」とそれを弱めることができた経験を下に,「フォールトライン」という概念も紹介します.
Based on my experience of experiencing an extreme gender ratio change when advancing from an all-girls junior and senior high school to a department with over 90% male students, I will discuss the 'stereotype threat' I felt and how I was able to mitigate it, as well as introduce the concept of 'faultline'.
登録フォーム(Registration form):
In preparation...
登録締め切り(deadline for registration):
2026年1月9日(金)17時
January 9th (Friday) 17pm
高校のときは(受験)数学があまり好きではなく、工学部へ。囲碁にハマっており自分より囲碁が強い人工知能を作りたかった。当時の人工知能はまだまだ卵の段階で魅力を見いだせず、機械に考えさせるのではなく、やはり自分が考えたいと思うようになり数学を学び始める。同時にサークル活動にて演劇をやっており、役者か学者か、迷った末に少しだけ学者のほうに才能を感じたので研究者を目指す道へ。とにかく面白いものが好きで、分野にこだわりはなく、正直に言うとそもそも学問でなくてもよい。大学院では3次元双曲幾何学、その後タイヒミュラー理論とそれに関連するランダムウォーク、現在は2次元と3次元の双曲幾何学をつなげる分野に興味を持っている。
In high school, I didn’t particularly enjoy mathematics, so I went on to study engineering. At that time, I was deeply into the game of Go and wanted to create an AI that could play better than I could. However, AI was still in its infancy, and I realized that I was more interested in thinking for myself than in making machines think. That realization led me to study mathematics. At the same time, I was also involved in a theater club, and for a while, I couldn’t decide whether to pursue acting or academia. In the end, I felt I had slightly more talent as a scholar than as an actor, so I chose the research path. I have always been drawn to whatever I find intellectually engaging, regardless of the field, and to be honest, it doesn’t even have to be “academic”. In graduate school, I studied 3-dimensional hyperbolic geometry; later, my interests expanded to Teichmüller theory and related random walks. Currently, I’m fascinated by questions that bridge 2- and 3-dimensional hyperbolic geometry.
2次元、3次元の双曲幾何に関してはさまざまな数値計算が可能であることが知られている。本講演では講演者の博士論文や、最近の研究における数値計算において関連する話題と合わせて紹介する。
A variety of numerical computations can be performed in two- and three-dimensional hyperbolic geometry. In this talk, I will talk about some computations done in my doctoral dissertation and recent research.
工学部など「数学科以外」の学部を卒業し、大学院から数学を始め、数学者として生きている人間は少数派である。大学院時代、ポスドク時代などに気をつけていたことなどについてお話する。
Those who graduated from faculties other than mathematics—such as engineering—and then began studying mathematics in graduate school to become mathematicians are in the minority. In this talk, I will share some thoughts on what I paid attention to during my graduate and postdoctoral years.