Geobacter metallireducens, also known as the "metal eating microbe", is actually not a pathogen, but is of interest because of its capability of thriving in anerobic enviornments while being able to produce the agents responsible for the oxidation of organic compounds.
The primary environment in which it thrives are anerobic sedimentary environments, such as aquatic beds, wetlands, etc.
It has been used in the removal/reduction of chloramphenicol, which is a chlorinate nitroaromatic antibiotic.
It is a microbe of interest regarding the bioremediation at uranium sites.
BSL Level: 1
Grows only in anaerobic conditions.
Only available for growth in frozen state, must be stored at -80 degrees C, grown at 30 degrees C.
Growth in 80% Nitrogen Gas and 20% Carbon Dioxide.
Kingdom: Bacteria
Phylum: Proteobaceria
Class: Deltaproteobacteria
Order: Desulfuromonadales
Family: Geobacteraceae
Genus: Geobacter
Species: Geobacter metallireducens
Image taken using electron microscopy by Derek Lovley.
Has a distinct cocci shape, and there are characterized flagellum.
Not many images of this microbe available, and no differentiation media has been documented.
BES (Biochemical Electrical Systems) is one of the most common methods of growing Geobacteria in general.
The preparation of a gassing station is one of the basic necessities to cultivate these organisms, which pumps nitrogen gas and carbon dioxide into the growth medium in order to produce an anaerobic environment.
NBAF medium is needed for them to grow as well, and cysteine is added to act as a reducing agent.
Primer pair that is commonly used: Geo196F and Geo999R
Geo196F: 5’-TTCGGGCCTTTTGTCAC-3’
Geo999R:5’-ACCCCCTACTTTCATAG-3’
Melting point: 83.6 degrees Celcius
GC Content: 59.5%
3997420 bp chromosome length
>NC_007517 Geobacter metallireducens GS-15 - nucleotides 1310251-1311070 (820)
CTTCGGGCCTTTTGTCACTGGATGAGTCCGCGTACCATTAGCTAGTTGGTGGGGTAATGGCCCACCAAGGCTACGATGGTTAGCTGGTCTGAGAGGATGATCAGCCACACTGGAACTGAGACACGGTCCAGACTCCTACGGGAGGCAGCAGTGGGGAATTTTGCGCAATGGGCGAAAGCCTGACGCAGCAACGCCGCGTGAGTGATGAAGGCCCTCGGGTCGTAAAGCTCTGTCGGGAGGGAAGAAGTGATTGAGGGTTAATACCCCTTGGTCTTGACGGTACCTCCGAAGGAAGCACCGGCTAACTCCGTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTGTTCGGAATTATTGGGCGTAAAGCGCGTGTAGGCGGTTTCTTAAGTCTGATGTGAAAGCCCCGGGCTCAACCTGGGAAGTGCATTGGAAACTGGGAGACTTGAGTACGGGAGAGGGTAGTGGAATTCCTAGTGTAGGAGTGAAATCCGTAGATATTAGGAGGAACACCGGTGGCGAAGGCGGCTACCTGGACCGATACTGACGCTGAGACGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTACTAGGTGTTGCGGGTATTGACCCCTGCAGTGCCGCAGCTAACGCATTAAGTACTCCGCCTGGGAAGTACGGCCGCAAGGCTAAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGACGCAACGCGCAGAACCTTACCTGGGCTTGACATCCGCGGAACCTCTATGAAAGTAGGGGG
>NC_007517 Geobacter metallireducens GS-15 - nucleotides 3245029-3245848 (820)
CACCCCCTACTTTCATAGAGGTTCCGCGGATGTCAAGCCCAGGTAAGGTTCTGCGCGTTGCGTCGAATTAAACCACATGCTCCACCGCTTGTGCGGGCCCCCGTCAATTCCTTTGAGTTTTAGCCTTGCGGCCGTACTTCCCAGGCGGAGTACTTAATGCGTTAGCTGCGGCACTGCAGGGGTCAATACCCGCAACACCTAGTACTCATCGTTTACGGCGTGGACTACCAGGGTATCTAATCCTGTTTGCTCCCCACGCTTTCGCGTCTCAGCGTCAGTATCGGTCCAGGTAGCCGCCTTCGCCACCGGTGTTCCTCCTAATATCTACGGATTTCACTCCTACACTAGGAATTCCACTACCCTCTCCCGTACTCAAGTCTCCCAGTTTCCAATGCACTTCCCAGGTTGAGCCCGGGGCTTTCACATCAGACTTAAGAAACCGCCTACACGCGCTTTACGCCCAATAATTCCGAACAACGCTTGCACCCTCCGTATTACCGCGGCTGCTGGCACGGAGTTAGCCGGTGCTTCCTTCGGAGGTACCGTCAAGACCAAGGGGTATTAACCCTCAATCACTTCTTCCCTCCCGACAGAGCTTTACGACCCGAGGGCCTTCATCACTCACGCGGCGTTGCTGCGTCAGGCTTTCGCCCATTGCGCAAAATTCCCCACTGCTGCCTCCCGTAGGAGTCTGGACCGTGTCTCAGTTCCAGTGTGGCTGATCATCCTCTCAGACCAGCTAACCATCGTAGCCTTGGTGGGCCATTACCCACCAACTAGCTAATGGTACGCGGACTCATCCAGTGACAAAAGGCCCGA
Amos, B. K., Sung, Y., Fletcher, K. E., Gentry, T. J., Wu, W. M., Criddle, C. S., Zhou, J.,Löffler, F. E. 2007. Detection and quantification of Geobacter lovleyi strain SZ: implications for bioremediation at tetrachloroethene- and uranium-impacted sites. Appl Environ Microbiol. 21: 6898-904. doi:10.1128/AEM.01218-07
Lovley D. R., Giovannoni S. J., White D. C., Champine J. E., Phillips E. J. P., Gorby Y. A.,Goodwin S.1993. Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch. Microbiol. 159, 336–344 (1993). doi: 10.1007/BF00290916.
Lovley DR, Ueki T, Zhang T, Malvankar NS, Shrestha PM, Flanagan KA, Aklujkar M, Butler JE, Giloteaux L, Rotaru AE, Holmes DE, Franks AE, Orellana R, Risso C, Nevin KP.2011. Geobacter: the microbe electric's physiology, ecology, and practical applications. Adv Microb Physiol.59:1-100. doi: 10.1016/B978-0-12-387661-4.00004-5. PMID: 22114840.
Xu H., Xiao L., Zheng S., Zhang Y., Li J., Liu F. 2019. Reductive degradation of chloramphenicol by Geobacter metallireducens. Sci. China Technol. Sci. 62, 1688–1694. https://doi.org/10.1007/s11431-018-9415-2
My name is Hema Karlapudi, I'm currently a student at the University of Florida studying Microbiology and Behavioral/Cognitive Neuroscience. I am on the pre-medicine track, and have been doing research for 3 years at McKnight Brain Institute on campus! I discovered my interest in microbiology during my second year of undergrad, and I hope to pursue more microbiology research in medical school!