Campylobacter jejuni is considered a pathogen and is the most common foodborne pathogen in the United States. In severe cases, it may cause Guillan-Barre syndrome, a muscular and neurological condition, however this is very rare. Typically, C. Jejuni is known as a common cause of food poisoning. The infection can be prevented via greater caution during poultry cooking and raw poultry handling. Proper hand-washing and sanitation can greatly reduce the possibility of infection.
Campylobacter jejuni is encountered via the handling of raw poultry and can also be found in animal feces. After infection, the microorganism resides in the gastrointestinal tract and can cause diarrhea and other inflammatory responses.
The microorganism is important as it is common worldwide and causes foodborne illness. There are not any oddities, however, there is the fact that it has been linked to the onset of Guillan-Barre syndrome post-infection with C. jejuni.
Gideon shows that the organism is nalidixic acid susceptible, however the common treatment regimen for infected individuals includes azithromycin, and sometimes erythromycin.
Gram-negative stain of C. jejuni
The morphology of this microorganism takes on what is referred to as “gull-wing shaped” or can also be referred to as a spiral corkscrew shape. The scanning electron microscope below best captures this morphology which is difficult to see under the gram-stain.
Scanning electron microscope image of C. jejuni
The BSL level of Campylobacter jejuni is BSL2. Brain heart infusion agar with 5% rabbit blood (BHIA) and trypticase soy agar with 5% sheep blood (BAP) are required to culture this microorganism. Campylobacter jejuni requires a micro-aerobic atmosphere (lower oxygen than atmospheric levels) for optimal growth.
If a frozen sample containing the microorganism is received, it must be placed on dry ice to prevent thawing. A sterile inoculating loop must be used to remove a small portion of the frozen sample and transfer it to a BHIA agar plate for streaking. The plate must be incubated for 24-48 hours at 37 degrees Celsius, and can then be subcultured on a BAP plate. Alternatively, a freeze dried pellet can be rehydrated using ATCC Medium 1115: Brucella albimi broth or ATCC Medium 177: Fluid thioglycollate medium, then this inoculated media can be transferred to an agar plate for growth.
Due to the microaerophilic nature of Campylobacter jejuni, inoculated tubes or agar plates must be incubated under a microaerophilic environment for 24-48 hours. This can be performed using an aerobe jar that includes a catalyst and a microaerophilic gas generator.
Campylobacter jejuni was discovered in 1886, by a pediatrician named Theodor Escherich, who also discovered E. coli. He discovered C. jejuni when analyzing stool from children that had diarrhea.
Gideon Results 1
Gideon Results 2
Gideon Results 3
When experimenting with Gideon, the closest results to Campylobacter jejuni included Helicobacter pylori as well as other species of Campylobacter. A few specific tests were able to eliminate or significantly reduce the probability of Helicobacter pylori, including nitrate to nitrite conversion, capnophilic, and most significantly, nalidixic acid susceptibility and hippurate hydrolysis.
Other microbes may be able to grow on the conditions shown above, however there are still differences and tests that can be used to differentiate further. For instance, other species of Campylobacter such as Campylobacter lari are not sensitive to nalidixic acid, so this may be used to specifically isolate Campylobacter jejuni.
In order to amplify the 16s rRNA sequence of C. jejuni, the following primers were used:
Primer 1 -> 5'-ATCTAATGGCTTAACCATTAAAC-3'
Primer 2 -> 5'-GGACGGTAACTAGTTTAGTATT-3'
Melting temperature of Primer 1: 48.1
Melting temperature of Primer 2: 49.2
GC content of Primer 1: 30.5%
GC content of Primer 2: 36%
>NR_118520.1 Campylobacter jejuni subsp. jejuni ATCC 33560 16S ribosomal RNA, partial sequenceAGTGAACGCTGGCGGCGTGCCTAATACATGCAAGTCGAACGATGAAGCTTCTAGCTTGCTAGAAGTGGATTAGTGGCGCACGGGTGAGTAAGGTATAGTTAATCTGCCCTACACAAGAGGACAACAGTTGGAAACGACTGCTAATACTCTATACTCCTGCTTAACACAAGTTGAGTAGGGAAAGTTTTTCGGTGTAGGATGAGACTATATAGTATCAGCTAGTTGGTAAGGTAATGGCTTACCAAGGCTATGACGCTTAACTGGTCTGAGAGGATGATCAGTCACACTGGAACTGAGACACGGTCCAGACTCCTACGGGAGGCAGCAGTAGGGAATATTGCGCAATGGGGGAAACCCTGACGCAGCAACGCCGCGTGGAGGATGACACTTTTCGGAGCGTAAACTCCTTTTCTTAGGGAAGAATTCTGACGGTACCTAAGGAATAAGCACCGGCTAACTCCGTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTACTCGGAATCACTGGGCGTAAAGGGCGCGTAGGCGGATTATCAAGTCTCTTGTGAAATCTAATGGCTTAACCATTAAACTGCTTGGGAAACTGATAGTCTAGAGTGAGGGAGAGGCAGATGGAATTGGTGGTGTAGGGGTAAAATCCGTAGATATCACCAAGAATACCCATTGCGAAGGCGATCTGCTGGAACTCAACTGACGCTAAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCCTAAACGATGTACACTAGTTGTTGGGGTGCTAGTCATCTCAGTAATGCAGCTAACGCATTAAGTGTACCGCCTGGGGAGTACGGTCGCAAGATTAAAACTCAAAGGAATAGACGGGGACCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAGGATACGCGAAGAACCTTACCTGGGCTTGATATCCTAAGAACCTTATAGAGATATGAGGGTGCTAGCTTGCTAGAACTTAGAGACAGGTGCTGCACGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCACGTATTTAGTTGCTAACGGTTCGGCCGAGCACTCTAAATAGACTGCCTTCGTAAGGAGGAGGAAGGTGTGGACGACGTCAAGTCATCATGGCCCTTATGCCCAGGGCGACACACGTGCTACAATGGCATATACAATGAGACGCAATACCGCGAGGTGGAGCAAATCTATAAAATATGTCCCAGTTCGGATTGTTCTCTGCAACTCGAGAGCATGAAGCCGGAATCGCTAGTAATCGTAGATCAGCCATGCTACGGTGAATACGTTCCCGGGTCTTGTACTCACCGCCCGTCACACCATGGGAGTTGATTTCACTCGAAGCCGGAATACTAAACTAGTTACCGTCCACAGTGGAATCAGCGACTGGGGTG
>NR_118520.1 Campylobacter jejuni subsp. jejuni ATCC 33560 16S ribosomal RNA, partial sequenceAGTGAACGCTGGCGGCGTGCCTAATACATGCAAGTCGAACGATGAAGCTTCTAGCTTGCTAGAAGTGGATTAGTGGCGCACGGGTGAGTAAGGTATAGTTAATCTGCCCTACACAAGAGGACAACAGTTGGAAACGACTGCTAATACTCTATACTCCTGCTTAACACAAGTTGAGTAGGGAAAGTTTTTCGGTGTAGGATGAGACTATATAGTATCAGCTAGTTGGTAAGGTAATGGCTTACCAAGGCTATGACGCTTAACTGGTCTGAGAGGATGATCAGTCACACTGGAACTGAGACACGGTCCAGACTCCTACGGGAGGCAGCAGTAGGGAATATTGCGCAATGGGGGAAACCCTGACGCAGCAACGCCGCGTGGAGGATGACACTTTTCGGAGCGTAAACTCCTTTTCTTAGGGAAGAATTCTGACGGTACCTAAGGAATAAGCACCGGCTAACTCCGTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTACTCGGAATCACTGGGCGTAAAGGGCGCGTAGGCGGATTATCAAGTCTCTTGTGAAATCTAATGGCTTAACCATTAAACTGCTTGGGAAACTGATAGTCTAGAGTGAGGGAGAGGCAGATGGAATTGGTGGTGTAGGGGTAAAATCCGTAGATATCACCAAGAATACCCATTGCGAAGGCGATCTGCTGGAACTCAACTGACGCTAAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCCTAAACGATGTACACTAGTTGTTGGGGTGCTAGTCATCTCAGTAATGCAGCTAACGCATTAAGTGTACCGCCTGGGGAGTACGGTCGCAAGATTAAAACTCAAAGGAATAGACGGGGACCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAGGATACGCGAAGAACCTTACCTGGGCTTGATATCCTAAGAACCTTATAGAGATATGAGGGTGCTAGCTTGCTAGAACTTAGAGACAGGTGCTGCACGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCACGTATTTAGTTGCTAACGGTTCGGCCGAGCACTCTAAATAGACTGCCTTCGTAAGGAGGAGGAAGGTGTGGACGACGTCAAGTCATCATGGCCCTTATGCCCAGGGCGACACACGTGCTACAATGGCATATACAATGAGACGCAATACCGCGAGGTGGAGCAAATCTATAAAATATGTCCCAGTTCGGATTGTTCTCTGCAACTCGAGAGCATGAAGCCGGAATCGCTAGTAATCGTAGATCAGCCATGCTACGGTGAATACGTTCCCGGGTCTTGTACTCACCGCCCGTCACACCATGGGAGTTGATTTCACTCGAAGCCGGAATACTAAACTAGTTACCGTCCACAGTGGAATCAGCGACTGGGGTG
Altekruse, S. F., Stern, N. J., Fields, P. I., & Swerdlow, D. L. (1999). Campylobacter jejuni—An Emerging Foodborne Pathogen. Emerging Infectious Diseases, 5(1), 28-35. https://dx.doi.org/10.3201/eid0501.990104.
Aryal, S. (2019, June 14). Deoxyribonuclease (DNase) Test - Procedure, Uses and Interpretation. Retrieved October 01, 2020, from https://microbiologyinfo.com/deoxyribonuclease-dnase-test/
Aryal, S. (2019, June 14). Hippurate Hydrolysis Test - Procedure, Uses and Interpretation. Retrieved October 01, 2020, from https://microbiologyinfo.com/hippurate-hydrolysis-test/
Aryal, S., Ankur, Adzi, P., Jazz, Aashir, Z., Kamran, M., . . . Leeuwendaal, N. (2018, June 11). Catalase Test- Principle, Uses, Procedure, Result Interpretation with Precautions. Retrieved September 30, 2020, from https://microbiologyinfo.com/catalase-test-principle-uses-procedure-result-interpretation-with-precautions/
Aryal, S., Daniela, Taoufik, Penascosa, J., N., A., Hngerojan, & Nizam. (2018, September 26). Oxidase Test- Principle, Uses, Procedure, Types, Result Interpretation... Retrieved October 01, 2020, from https://microbiologyinfo.com/oxidase-test-principle-uses-procedure-types-result-interpretation-examples-and-limitations/
Campylobacter jejuni subsp. jejuni (ATCC® 33560™). (n.d.). Retrieved September 21, 2020, from https://www.atcc.org/Products/All/33560#generalinformation
Eiland LS, Jenkins LS. Optimal treatment of campylobacter dysentery. J Pediatr Pharmacol Ther. 2008;13(3):170-174. doi:10.5863/1551-6776-13.3.170
Hansson I, Persson M, Svensson L, Engvall EO, Johansson KE. Identification of nine sequence types of the 16S rRNA genes of Campylobacter jejuni subsp. jejuni isolated from broilers. Acta Vet Scand. 2008;50(1):10. Published 2008 May 21. doi:10.1186/1751-0147-50-10
Inglis GD, Kalischuk LD. Use of PCR for direct detection of Campylobacter species in bovine feces. Appl Environ Microbiol. 2003;69(6):3435-3447. doi:10.1128/aem.69.6.3435-3447.2003
Johnson TJ, Shank JM, Johnson JG. Current and Potential Treatments for Reducing Campylobacter Colonization in Animal Hosts and Disease in Humans. Front Microbiol. 2017;8:487. Published 2017 Mar 23. doi:10.3389/fmicb.2017.00487
Kamata K, Tokuda Y. Rapid diagnosis of Campylobacter jejuni by stool Gram stain examination. Case Reports 2014;2014:bcr2013202876.
Misawa, N., Hirayama, K., Itoh, K., & Takahashi, E. (1995). Detection of alpha- and beta-hemolytic-like activity from Campylobacter jejuni. Journal of clinical microbiology, 33(3), 729–731. https://doi.org/10.1128/JCM.33.3.729-731.1995
Sensitivity to Nalidixic Acid. (2011). Retrieved September 30, 2020, from https://atlas.sund.ku.dk/microatlas/food/pheno_tests/Sensitivity_to_Nalidixic_Acid/