Kính mời quý thầy cô, nghiên cứu sinh, học viên cao học các sinh viên quan tâm sắp xếp thời gian đến tham dự buổi seminar Lý thuyết Tối ưu với nội dung sau:
Báo cáo 1: Lagrange multiplier rules for proper efficiency in nonsmooth
semi-infinite multiobjective optimization
Người trình bày: TS. Nguyễn Minh Tùng (ĐH Khoa học Tự nhiên, ĐHQG TPHCM)
Thời gian: Thứ bảy - 04.03.2017 - 14h00
Địa điểm: phòng E.301 - ĐH Khoa học Tự nhiên, 227 Nguyễn Văn Cừ, Quận 5, TpHCM
Tóm tắt báo cáo: In this paper, we consider a nonsmooth semi-infinite multiobjective optimization problemssubject to mixed constraints including in_nite equality and inequality constraints in terms of Michel-Penot subdifferential. By several constraint qualification, Karush-Kuhn-Tucker necessary conditions for proper and firm efficiency are established. A generalized Manganarian-Fromovitz and Arrow-Hurwicz-Uzawa constraint qualifications are proposed to ensure that some constraint qualifcations hold. Sufficient conditions for proper efficiency also obtained under the assumption of generalized convexity. Later, some of these results are applied to a nonsmooth fractional semi-infinite multiobjective optimization problems.
Báo cáo 2: Variational convergence of bifunctions on nonrectangular domains and approximations of quasivariational problems
Người trình bày: TS. Huỳnh Thị Hồng Diễm (ĐH Bách Khoa, ĐHQG TPHCM)
Thời gian: Chủ nhật - 05.03.2017 - 08h30
Địa điểm: phòng F.303 - ĐH Khoa học Tự nhiên, 227 Nguyễn Văn Cừ, Quận 5, TpHCM
Tóm tắt báo cáo: Epi/hypo convergence and lopsided convergence are extended to the case of finite-valued bifunctions defined on nonrectangular domains. Their basic characterizations are established. Variational properties such as those about saddle points, minsup points, sup-projections, etc, of bifunctions are shown to be preserved for their limit bifunctions when the bifunctions epi/hypo or lopsided converge (possibly under some additional assumptions). Applications to quasi equilibrium problems, multiopjective quasioptimization, and generalized noncooperative games together with their dual problems are provided. The obtained results are new and, when applied to some special cases of bifunctions defined on rectangles, also improve known results.