Retour aux Chordés


Commentaires

Si les relations entre les trois grandes clades d'Oiseaux (Paléognathes, Galloansérés et Néoaves) ne font aucun doute, les relations au sein des Paléognathes et surtout au sein des Néoaves sont notoirement difficiles à établir. Cette phylogénie est une proposition s'appuyant essentiellement sur le consensus. Les taxons suivants ont une position particulièrement fragile : les Casuariiformes, le clade (Phoenicoptériformes, Podicipédiformes), les Caprimulgiformes, les Charadriiformes, les Gruiformes, les Opisthocomiformes et les Suliformes (au sein des Pélécaniformes ?).


Références

  • Bravo GA, Schmitt CJ & Edwards Sv (2021) What have we learned from the first 500 avian genomes? Annual Review of Ecology, Evolution and Systematics, 52: 611-639

  • Gilbert PS, Wu J, Simon MW, Sinsheimer JS & Alfaro ME (2018) Filtering nucleotide sites by phylogenetic signal to noise ratio increases confidence in the Neoaves phylogeny generated from ultraconserved elements. Molecular Phylogenetics and Evolution, 126: 116-128

  • Jarvis ED, Mirarab S, Alberer AJ, Li B, Houde P, Li C, Ho SYW, Faircloth BC, Nabholz B, Howard JT et al. (2014) Whole-genome analyses resolve early branches in the tree of life of modern birds. Science, 346: 1320-1331

  • Kimball RT, Oliveros CH, Wang N, White ND, Barker FK, Field DJ, Ksepka DT, Chesser RT, Moyle RG, Braun MJ et al. (2019) A phylogenomic supertree of birds. Diversity, 11: 109

  • Kuhl H, Frankl-Vilches C, Bakker A, Mayr G, Nikolaus G, Boerno ST, Klages S, Timmermann B & Gahr M (2020) An unbiased molecular approach using 3'-UTRs resolves the avian family-level tree of life. Molecular Biology and Evolution, doi: 10.1093/molbev/msaa191

  • Prum RO, Berv JS, Dornburg A, Field DJ, Townsend JP, Moriarty Lemmon E & Lemmon AR (2015) A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature, 526: 569-577

  • Reddy S, Kimball RT, Pandey A, Hosner PA, Braun MJ, Hackett SJ, Han KL, Harshman J, Huddleston CJ, Kingston S et al. (2017) Why do phylogenomic data sets yield conflicting trees? Data types influences the avian tree of life more than taxon sampling. Systematic Biology, 66: 857-879

  • Sackton TB, Grayson P, Cloutier A, Hu Z, Liu JS, Wheeler NE, Gardner PP, Clarke JA, Baker AJ, Clamp M et al. (2019) Convergent regulatory evolution and loss of flight in paleognathous birds. Science, 364: 74-78

  • Sangster G, Braun EL, Johansson US, Kimball RT, Mayr G & Suh A (2022) Phylogenetic definitions for 25 higher-level clade names of birds. Avian Research, 13: 100027

  • Simmons MP, Springer MS & Gatesy J (2022) Gene-tree misrooting drives conflicts in phylogenomic coalescent analyses of paleognath birds. Molecular Phylogenetics and Evolution, 167: 107344

  • Urantówka AD, Kroczak A & Mackiewicz P (2020) New view on the organization and evolution of Palaeognathae mitogenomes poses the question on the ancestral gene rearrangement in Aves. BMC Genomics, 21: 874

  • Wang Z, Zhang J, Xu X, Witt C, Deng Y, Chenc G, Meng G, Feng S, Xu L, Szekely T et al. (2022) Phylogeny and sex chromosome evolution in Palaeognathae. Journal of Genetics and Genomics, 49: 109-119

  • Yonezawa T, Segawa T, Mori H, Campos PF, Hongoh Y, Endo H, Akiyoshi A, Kohno N, Nishida S, Wu J et al. (2016) Phylogenomics and morphology of extinct paleognaths reveal the origin and evolution of the Ratites. Current Biology, 27: 68-77