Commentaires
Si les relations entre les trois grandes clades d'Oiseaux (Paléognathes, Galloansérés et Néoaves) ne font aucun doute, les relations au sein des Paléognathes et surtout au sein des Néoaves sont notoirement difficiles à établir. Cette phylogénie est une proposition s'appuyant essentiellement sur le consensus. Les taxons suivants ont une position particulièrement fragile : les Casuariiformes, le clade (Phoenicoptériformes, Podicipédiformes), les Caprimulgiformes, les Charadriiformes, les Gruiformes, les Opisthocomiformes et les Suliformes (au sein des Pélécaniformes ?).
Références (10 dernières années)
Bravo GA, Schmitt CJ & Edwards Sv (2021) What have we learned from the first 500 avian genomes? Annual Review of Ecology, Evolution and Systematics, 52: 611-639
Gatesy J & Springer M (2022) Phylogenomic coalescent analyses of avian retroelements infer zero-length branches at the base of Neoaves, emergent support for controversial clades, and ancient introgressive hybridization in Afroaves. Genes, 13: 1167
Gilbert PS, Wu J, Simon MW, Sinsheimer JS & Alfaro ME (2018) Filtering nucleotide sites by phylogenetic signal to noise ratio increases confidence in the Neoaves phylogeny generated from ultraconserved elements. Molecular Phylogenetics and Evolution, 126: 116-128
Kimball RT, Oliveros CH, Wang N, White ND, Barker FK, Field DJ, Ksepka DT, Chesser RT, Moyle RG, Braun MJ et al. (2019) A phylogenomic supertree of birds. Diversity, 11: 109
Kuhl H, Frankl-Vilches C, Bakker A, Mayr G, Nikolaus G, Boerno ST, Klages S, Timmermann B & Gahr M (2020) An unbiased molecular approach using 3'-UTRs resolves the avian family-level tree of life. Molecular Biology and Evolution, 38: 108-127
Prum RO, Berv JS, Dornburg A, Field DJ, Townsend JP, Moriarty Lemmon E & Lemmon AR (2015) A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature, 526: 569-577
Reddy S, Kimball RT, Pandey A, Hosner PA, Braun MJ, Hackett SJ, Han KL, Harshman J, Huddleston CJ, Kingston S et al. (2017) Why do phylogenomic data sets yield conflicting trees? Data types influences the avian tree of life more than taxon sampling. Systematic Biology, 66: 857-879
Sackton TB, Grayson P, Cloutier A, Hu Z, Liu JS, Wheeler NE, Gardner PP, Clarke JA, Baker AJ, Clamp M et al. (2019) Convergent regulatory evolution and loss of flight in paleognathous birds. Science, 364: 74-78
Sangster G, Braun EL, Johansson US, Kimball RT, Mayr G & Suh A (2022) Phylogenetic definitions for 25 higher-level clade names of birds. Avian Research, 13: 100027
Simmons MP, Springer MS & Gatesy J (2022) Gene-tree misrooting drives conflicts in phylogenomic coalescent analyses of paleognath birds. Molecular Phylogenetics and Evolution, 167: 107344
Takezaki N (2023) Effect of different types of sequence data on Palaeognath phylogeny. Genome Biology and Evolution, 15: evad092
Urantówka AD, Kroczak A & Mackiewicz P (2020) New view on the organization and evolution of Palaeognathae mitogenomes poses the question on the ancestral gene rearrangement in Aves. BMC Genomics, 21: 874
Wang N, Braun E, Liang B, Cracraft J & Smith S (2022) Categorical edge-based analyses of phylogenomic data reveal conflicting signals for difficult relationships in the avian tree. Molecular Phylogenetics and Evolution, 174: 107550
Wang Z, Zhang J, Xu X, Witt C, Deng Y, Chenc G, Meng G, Feng S, Xu L, Szekely T et al. (2022) Phylogeny and sex chromosome evolution in Palaeognathae. Journal of Genetics and Genomics, 49: 109-119
Wu S, Rheindt F, Zhang J, Wang J, Zhang L, Quan C, Li Z, Wang M, Wu F, Qu Y et al. (2024) Genomes, fossils, and the concurrent rise of modern birds and flowering plants in the Late Cretaceous. Proceedings of the National Academy of Sciences of the United States of America, 121: e2319696121
Yonezawa T, Segawa T, Mori H, Campos PF, Hongoh Y, Endo H, Akiyoshi A, Kohno N, Nishida S, Wu J et al. (2016) Phylogenomics and morphology of extinct paleognaths reveal the origin and evolution of the Ratites. Current Biology, 27: 68-77