Retour à la racine

En rouge les taxons pour lesquels l'arbre va plus loin :

Urochordés - Chondrichthyens - Actinoptérygiens - Lissamphibiens - Lépidosauriens - Oiseaux - Mammifères


Commentaires

Céphalochordés/Urochordés - Il fait désormais consensus que la position des Céphalochordés et des Urochordés est inversée par rapport à la systématique traditionnelle, i.e. que les Urochordés sont le véritable groupe frère des Craniates/Vertébrés.

Vertébrés - Du fait de la monophylie des Cyclostomes, le terme "Vertébrés" devient synonyme de "Craniates". Conformément à ce que cela suggère, il est apparu récemment que les myxines (Cyclostomes) possèdent bien des éléments vertébraux.

Cyclostomes - Il est désormais établi que les myxines et les lamproies forment bel et bien un groupe monophylétique.

Chéloniens - Les articles récents semblent s'accorder à placer les Chéloniens en groupe frère des Archosauriens. De fait le terme "Sauropsidés" devient synonyme de "Diapsides". Le clade formé par les Chéloniens et les Archosauriens a été récemment nommé Archélosauriens.


Références

  • Austin CM, Tan MH, Croft LJ, Hammer MP & Gan HM (2015) Whole genome sequencing of the Asian arowana (Scleropages formosus) provides insights into the evolution of ray-finned fishes. Genome Biology and Evolution, 7: 2885-2895

  • Chen M, Zou M, Yang L & He S (2012) Basal jawed vertebrate phylogenomics using transcriptomic data from Solexa sequencing. PLoS ONE, 7: e36256

  • Chiari Y, Cachais V, Galtier N & Delsuc F (2012) Phylogenomic analyses support the position of turtles as the sister group of birds and crocodiles (Archosauria). BMC Biology, 10: 65

  • Crawford NG, Faircloth BC, McCormack JE, Brumfield RT, Winker K & Glenn TC (2012) More than 1000 ultraconserved elements provide evidence that turtles are the sister group of archosaurs. Biology Letters, 8: 783-786

  • Donoghue PCJ & Keating JN (2014) Early vertebrate evolution. Palaeontology, 57: 879-893

  • Dunn CW, Giribet G, Edgecombe GD & Hejnol A (2014) Animal phylogeny and its evolutionary implications. Annual Reviews of Ecology Evolution, Evolution, and Systematics, 45: 371-395

  • Field DJ, Gauthier JA, King BL, Pisani D, Lyson TR & Peterson KJ (2014) Toward consilience in reptile phylogeny: microRNAs support an archosaur, not a lepidosaur affinity for turtles. Evolution & Development, 16: 189-196

  • Fong JJ, Brown JM, Fujita MK & Boussau B (2012) A phylogenomic approach to vertebrate phylogeny supports a turtle-archosaur affinity and a possible paraphyletic Lissamphibia. PLoS ONE, 7: e48990

  • Gemell NJ, Rutherford K, Prost S, Tollis M, Winter D, Macey JR, Adelson DL, Suh A, Bertozzi T, Grau JH et al. (2020) The tuatara genome reveals ancient features of amniote evolution. Nature, 584: 403-409

  • Giribet G (2015) New animal phylogeny: future challenges for animal phylogeny in the age of phylogenomics. Organisms Diversity & Evolution, 16: 419-426

  • Giribet G (2016) Genomics and the animal tree of life: conflicts and future prospects. Zoologica Scripta, 45: 14-21

  • Hara Y, Yamaguchi K, Onimaru K, Kadota M, Koyanago M, Keeley SD, Tatsumi K, Tanaka K, Motone F, Kageyama Y et al. (2018) Shark genomes provide insights into elasmobranch evolution and the origin of vertebrates. Nature Ecology & Evolution, doi: 10.1038/s41559-018-0673-5

  • Heimberg AM, Cowper-Sallari R, Sémon M, Donoghue PCJ & Peterson KJ (2010) microRNAs reveal the interrelationships of hagfish, lampreys, and gnathostomes and the nature of the ancestral vertebrate. Proceedings of the National Academy of Sciences of the United States of America, 107: 19379-19383

  • Irisarri I, Baurain D, Brinkmann H, Delsuc F, Sire JY, Kupfer A, Petersen J, Jarek M, Meyer A, Vences M & Philippe H (2017) Phylotranscriptomic consolidation of the jawed vertebrate timetree. Nature Ecology & Evolution, 1: 1370-1378

  • Janvier P (2011) Comparative anatomy: all vertebrates do have vertebra. Current Biology, 21: R661-R663

  • Lind AL, Lai YYY, Mostovoy Y, Holloway AK, Iannucci A, Mak ACY, Fondi M, Orlandini V, Eckalbar WL, Milan M et al. (2019) Genome of the Komodo dragon reveals adaptations in the cardiovascular and chemosensory systems of monitor lizards. Nature Ecology & Evolution, 3: 1241-252

  • Meyer A, Schloissnig S, Franchini P, Du K, Woltering JM, Irisarri I, Wong WY, Nowoshilow S, Kneitz S, Kawaguchi A et al. (2021) Giant lungfish genome elucidates the conquest of land by vertebrates. Nature, 590: 284-289

  • Ota KG, Oisi Y, Fujimoto S & Kuratani S (2014) The origin of developmental mechanisms underlying vertebral elements: implications from hagfish evo-devo. Zoology, 117: 77-80

  • Satoh N, Rokhsar D & Nishikawa T (2014) Chordate evolution and the three-phylum system. Proceedings of the Royal Society B, 281: 20141729

  • Shaffer HB, Minx P, Warren DE, Shedlock AM, Thomson RC, Valenzuela N, Abramyan J, Amemiya CT, Badenhorst D, Biggar KK et al. (2013) The western painted turtle genome, a model for the evolution of extreme physiological adaptations in a slowly evolving lineage. Genome Biology, 14: R28

  • Shen XX, Liang D, When JZ & Zhang P (2011) Multiple genome alignments facilitate development of NPCL markers: a case study of tetrapod phylogeny focusing on the position of turtles. Molecular Biology and Evolution, 28: 3237-3252

  • Shen XX, Hittinger CT & Rokas A (2017) Contentious relationships in phylogenomic studies can be driven by a handful of genes. Nature Ecology & Evolution, 1: 126

  • Simakov O, Kawashima T, Marlétaz F, Jenkins J, Koyanagi R, Mitros T, Hisata K, Bredeson J, Shoguchi E, Gyoja F et al. (2015) Hemichordate genomes and deuterostome origins. Nature, 527: 459-465

  • Siu-Ting K, Torres-Sánchez M, San Mauro D, Wilcockson D, Wilkinson M, Pisani D, O'Connelle MJ & Creevey CJ (2019) Inadvertent paralog inclusion drives artefactual topologies and timetree estimates in phylogenomics. Molecular Biology and Evolution: msz067

  • Takezaki N & Nishihara H (2017) Support for lungfish as the closest relative of Tetrapods by using slowly evolving ray-finned fish as the outgroup. Genome Biology and Evolution, 9: 93-101

  • Tollis M, Hutchins ED, Stapley J, Rupp SM, Eckalbar WL, Maayan I, Lasku E, Infante CR, Dennis SR, Robertson JA et al. (2018) Comparative genomics reveals accelarated evolution in conserved pathways during the diversification of Anole lizards. Genome Biology and Evolution, 10: 489-506

  • Torres-Sánchez M, Creevey CJ, Kornobis E, Gower DJ, Wilkinson M & San Mauro D (2018) Multi-tissue transcriptomes of caecilian amphibians highlight incomplete knowledge of vertebrate gene families. Dna Research, doi: 10.1093/dnares/dsy034

  • Wang Z, Pascual-Anaya J, Zadissa A, Li W, Niimura Y, Huang Z, Li C, White S, Xiong Z, Fang D et al. (2013) The draft genomes of soft­shell turtle and green sea turtle yield insights into the development and evolution of the turtle­specific body plan. Nature Genetics, 45: 701-706