En rouge les taxons pour lesquels l'arbre va plus loin :
Urochordés - Chondrichthyens - Actinoptérygiens - Lissamphibiens - Lépidosauriens - Oiseaux - Mammifères
Commentaires
Céphalochordés/Urochordés - Il fait désormais consensus que la position des Céphalochordés et des Urochordés est inversée par rapport à la systématique traditionnelle, i.e. que les Urochordés sont le véritable groupe frère des Craniates/Vertébrés.
Vertébrés - Du fait de la monophylie des Cyclostomes, le terme "Vertébrés" devient synonyme de "Craniates". Conformément à ce que cela suggère, il est apparu récemment que les myxines (Cyclostomes) possèdent bien des éléments vertébraux.
Cyclostomes - Il est désormais établi que les myxines et les lamproies forment bel et bien un groupe monophylétique.
Chéloniens - Les articles récents s'accordent à placer les Chéloniens en groupe frère des Archosauriens. De fait le terme "Sauropsidés" devient synonyme de "Diapsides". Le clade formé par les Chéloniens et les Archosauriens a été nommé Archélosauriens.
Références (10 dernières années)
Austin CM, Tan MH, Croft LJ, Hammer MP & Gan HM (2015) Whole genome sequencing of the Asian arowana (Scleropages formosus) provides insights into the evolution of ray-finned fishes. Genome Biology and Evolution, 7: 2885-2895
Gemell NJ, Rutherford K, Prost S, Tollis M, Winter D, Macey JR, Adelson DL, Suh A, Bertozzi T, Grau JH et al. (2020) The tuatara genome reveals ancient features of amniote evolution. Nature, 584: 403-409
Giribet G (2015) New animal phylogeny: future challenges for animal phylogeny in the age of phylogenomics. Organisms Diversity & Evolution, 16: 419-426
Giribet G (2016) Genomics and the animal tree of life: conflicts and future prospects. Zoologica Scripta, 45: 14-21
Hara Y, Yamaguchi K, Onimaru K, Kadota M, Koyanago M, Keeley SD, Tatsumi K, Tanaka K, Motone F, Kageyama Y et al. (2018) Shark genomes provide insights into elasmobranch evolution and the origin of vertebrates. Nature Ecology & Evolution, 2: 1761-1771
Irisarri I, Baurain D, Brinkmann H, Delsuc F, Sire JY, Kupfer A, Petersen J, Jarek M, Meyer A, Vences M & Philippe H (2017) Phylotranscriptomic consolidation of the jawed vertebrate timetree. Nature Ecology & Evolution, 1: 1370-1378
Lind AL, Lai YYY, Mostovoy Y, Holloway AK, Iannucci A, Mak ACY, Fondi M, Orlandini V, Eckalbar WL, Milan M et al. (2019) Genome of the Komodo dragon reveals adaptations in the cardiovascular and chemosensory systems of monitor lizards. Nature Ecology & Evolution, 3: 1241-252
Meyer A, Schloissnig S, Franchini P, Du K, Woltering JM, Irisarri I, Wong WY, Nowoshilow S, Kneitz S, Kawaguchi A et al. (2021) Giant lungfish genome elucidates the conquest of land by vertebrates. Nature, 590: 284-289
Schartl M, Woltering J, Irisarri I, Du K, Kneitz S, Pippel M, Brown T, Franchini P, Li J, Li M et al. (2024) The genomes of all lungfish inform on genome expansion and tetrapod evolution. Nature, 634: 96-103
Shen XX, Hittinger CT & Rokas A (2017) Contentious relationships in phylogenomic studies can be driven by a handful of genes. Nature Ecology & Evolution, 1: 126
Simakov O, Kawashima T, Marlétaz F, Jenkins J, Koyanagi R, Mitros T, Hisata K, Bredeson J, Shoguchi E, Gyoja F et al. (2015) Hemichordate genomes and deuterostome origins. Nature, 527: 459-465
Simões T, Tollis M & Burbrink F (2025) Origin and early evolution of Squamates and their kin: from fossils to genomes. Annual Review of Ecology, Evolution and Systematics, 56: 265-290
Siu-Ting K, Torres-Sánchez M, San Mauro D, Wilcockson D, Wilkinson M, Pisani D, O'Connelle MJ & Creevey CJ (2019) Inadvertent paralog inclusion drives artefactual topologies and timetree estimates in phylogenomics. Molecular Biology and Evolution: msz067
Takezaki N & Nishihara H (2017) Support for lungfish as the closest relative of Tetrapods by using slowly evolving ray-finned fish as the outgroup. Genome Biology and Evolution, 9: 93-101
Tollis M, Hutchins ED, Stapley J, Rupp SM, Eckalbar WL, Maayan I, Lasku E, Infante CR, Dennis SR, Robertson JA et al. (2018) Comparative genomics reveals accelarated evolution in conserved pathways during the diversification of Anole lizards. Genome Biology and Evolution, 10: 489-506
Torres-Sánchez M, Creevey CJ, Kornobis E, Gower DJ, Wilkinson M & San Mauro D (2019) Multi-tissue transcriptomes of caecilian amphibians highlight incomplete knowledge of vertebrate gene families. Dna Research, 26: 13-20
Yu D, Ren Y, Uesaka M, Beavan A, Muffato M, Shen J, Li Y, Sato I, Wan W, Clark J et al. (2024) Hagfish genome elucidates vertebrate whole-genome duplication events and their evolutionary consequences. Nature Ecology & Evolution, 8: 519-535