Retour aux Arthropodes


Commentaires

« entognathes » - Il n'y a pas de consensus ni sur la monophylie des anciens Entognathes, ni sur les relations entre les trois taxons de ce groupe. Dans le doute nous les considérons paraphylétiques, ce qui est l'hypothèse la plus probable.

« aptérygotes » - Il est bien établi que les anciens Aptérygotes sont paraphylétiques. Le terme « thysanoures », qui désignait auparavant à la fois les Archéognathes et les Zygentomes, ne désigne désormais plus que les Zygentomes.

Paléoptères - Un petit doute subsiste sur la monophylie des Paléoptères, mais toutes les études récentes (dont les études dédiées) concluent à leur monophylie.

Polynéoptères - Les relations présentées ici ne font pas totalement consensus mais ce sont celles qui sont très majoritairement retrouvées, en particulier dans les études dédiées.

Blattariens - Les Blattariens comprennent les Blattoptères et les Isoptères, mais les Isoptères sont assez probablement des Blattoptères dérivés (les Blattoptères au sens traditionnel seraient donc paraphylétiques).

« paranéoptères » - Il y a un très sérieux doute sur la monophylie des anciens Paranéoptères, que nous considérons paraphylétiques ici.

Psocodiens - Les Psocodiens comprennent les Psocoptères et les Phthiraptères, mais les Phthiraptères sont peut-être des Psocoptères dérivés (les Psocoptères au sens traditionnel seraient donc paraphylétiques).

Coléoptéridiens - Les Coléoptéridiens comprennent les Coléoptères et les Strepsiptères, mais il y a un petit doute sur le fait que les Strepsiptères soient des Coléoptères dérivés (les Coléoptères au sens traditionnel pourraient donc être paraphylétiques).


Références

  • Beutel RG, Yavorskaya MI, Mashimo Y, Fukui M & Meusemann K (2017) The phylogeny of Hexapoda (Arthropoda) and the evolution of megadiversity. Proceedings of Arthropodan Embryological Society of Japan, 51: 1-15

  • Boussau B, Walton Z, Delgado JA, Collantes F, Beani L, Stewart IJ, Cameron SA, Whitfield JB, Johnston JS, Holland PWH et al. (2014) Strepsitera, phylogenomics and the long branch attraction problem. PLoS ONE 9: e107709

  • Chesters D (2017) Construction of a species-level tree of life for the insects and utility in taxonomic profiling. Systematic Biology, 66: 426-439

  • Chesters D (2019) The phylogeny of insects in the data-driven era. Systematic Entomology, doi: 10.1111/syen.12414

  • Dell’Ampio E, Meusemann K, Szucsich NU, Peters RS, Meyer B, Borner J, Petersen M, Aberer AJ, Stamatakis A, Walzl MG et al. (2013) Decisive data sets in phylogenomics: Lessons from studies on the phylogenetic relationships of primarily wingless insects. Molecular Biology and Evolution, 31: 239-249

  • Edgecombe GD & Legg DA (2014) Origins and early evolution of Arthropods. Frontiers in Palaeontology, 57: 457-468

  • Evangelista DA, Wipfler B, Béthoux O, Donath A, Fujita M, Kohli MK, Legendre F, Liu S, Machida R, Misof B et al. (2019) An integrative phylogenomic approach illuminates the evolutionary history of cockroaches and termites (Blattodea). Proceedings of the Royal Society B, 286: 20182076

  • Freitas F, Mello B & Schrago CG (2018) Multispecies coalescent analysis confirms standing phylogenetic instability in Hexapoda. Journal of Evolutionary Biology, 31: 1623-1631

  • Giribet G & Edgecombe GD (2012) Reevaluating the Arthropod tree of life. Annual Reviews of Entomology, 54: 167-186

  • Giribet G & Edgecombe GD (2019) The phylogeny and evolutionary history of Arthropods. Current Biology, 29: R592-R602

  • Johnson KP, Dietrich CH, Friedrich F, Beutel RG, Wipfler B, Peters RS, Allen JM, Petersen M, Donath A, Walden KKO et al. (2018) Phylogenomics and the evolution of hemipteroid insects. Proceedings of the National Academy of Sciences of the United States of America, doi: https://doi.org/10.1073/pnas.1815820115

  • Kjer KM, Simon C, Yavorskaya M & Beutel RG (2016) Progress, pitfalls and parallel universes: a history of insect phylogenetics. Journal of the Royal Society Interface, 13: 20160363

  • Li Z, Tiley GP, Galuska SR, Reardon CR, Kidder TI, Rundell RJ & Barker MS (2018) Multiple large-scale gene and genome duplications during the evolution of hexapods. Proceedings of the National Academy of Sciences of the United States of America, 115: 4713-4718

  • Lozano-Fernandez J, Giacomelli M, Fleming J, Chen A, Vinther J, Thomsen PF, Glenner H, Palero F, Legg DA, Iliffe M et al. (2019) Pancrustacean evolution illuminated by taxon-rich genomic-scale data sets with an expanded remipede sampling. Genome Biology and Evolution, 11: 2055-2070

  • Meusemann K, von Reumont B, Simon S, Roeding F, Strauss S, Kück P, Ebersberger I, Walzl M, Pass G, Breuers S et al. (2010) A phylogenomic approach to resolve the Arthropod Tree of Life. Molecular Biology and Evolution, 27: 2451-2464

  • Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, Frandsen PB, Ware J, Flouri T, Beutel RG, Niehuis O et al. (2014) Phylogenomics resolves the timing and pattern of insect evolution. Science, 346: 763-767

  • Noah KE, Hao J, Li L, Sun X, Foley B, Yang Q & Xia X (2020) Major revisions in Arthropod phylogeny through improved supermatrix, with support for two possible waves of land invasion by Chelicerates. Evolutionary Bioinformatics, 16: 12-12

  • Simon S, Narechania A, DeSalle R & Hadrys H (2012) Insect Phylogenomics: Exploring the source of incongruence using new transcriptomic data. Genome Biology and Evolution, 4: 1295-1309

  • Simon S, Blanke A & Meusemann K (2018) Reanalyzing the Palaeoptera problem - The origin of insect flight remains obscure. Arthropod Structure & Development, 47: 328-338

  • Song N, Li X, Yin X, Li X, Yin J & Pan P (2019) The mitochondrial genomes of palaeopteran insects and insights into the early insect relationships. Scientific Reports, 9: 17765

  • Thomas JA, Trueman JWH, Rambaut A & Welch JJ (2013) Relaxed phylogenetics and the Palaeoptera problem: Resolving deep ancestral splits in the insect phylogeny. Systematic Biology, 62: 285-297

  • Tihelka E, Cai C, Giacomelli M, Lozano-Fernandez J, Rota-Stabelli O, Huang D, Engel MS, Donoghue PCJ & Pisani D (2021) The evolution of insect biodiversity. Current Biology, 31: R1299-R1311

  • Trautwein MD, Wiegmann BM, Beutel R, Kjer KM & Yeates DK (2012) Advances in insect phylogeny at the dawn of the postgenomic era. Annual Reviews of Entomology, 57: 449-468

  • Vasilikopoulos A, Misof B, Meusemann K, Lieberz D, Flouri T, Beutel RG, Niehuis O, Wappler T, Rust J, Peters RS et al. (2020) An integrative phylogenomic approach to elucidate the evolutionary history and divergence times of Neuropterida (Insecta: Holometabola). BMC Evolutionary Biology, 20: 64

  • Wang Y, Engel MS, Rafael JA, Wu H, Rédei D, Xie Q, Wang G, Liu X & Bu W (2016) Fossil record of stem groups employed in evaluating the chronogram of insects (Arthropoda: Hexapoda). Scientific Reports, 6: 38939

  • Wang Y, Liu X, Garzón-Orduña IJ, Winterton SL, Yan Y, Aspöck U, Aspöck H & Yang D (2017) Mitochondrial phylogenomics illuminates the evolutionary history of Neuropterida. Cladistics, 33: 617-636

  • Wang Y, Zhou X, Wang L, Liu X, Yang D & Rokas A (2019) Gene selection and evolutionary modeling affect phylogenomic inference of Neuropterida based on transcriptome data. International Journal of Molecular Sciences, 20: 1072

  • Winterton SL, Lemmon AR, Gillung JP, Garzón IJ, Badano D, Bakkes DK, Breitkreuz LCV, Engel MS, Moriarty Lemmon E, Liu X et al. (2018) Evolution of lacewings and allied orders using anchored phylogenomics (Neuroptera, Megaloptera, Raphidioptera). Systematic Entomology, 43: 330-354

  • Wipfler B, Letsch H, Frandsen PB, Kapli P, Mayer C, Bartel D, Buckley TR, Donath A, Edgerly-Rooks JS, Fujita M et al. (2019) Evolutionary history of Polyneoptera and its implications for our understanding of early winged insects. Proceedings of the National Academy of Sciences of the United States of America, doi: https://doi.org/10.1073/pnas.1817794116

  • Yeates DK, Cameron SL & Trautwein M (2012) A view from the edge of the forest: recent progress in understanding the relationships of the insect orders. Australian Journal of Entomology, 51: 79-87

  • Zhang F, Ding Y, Zhu CD, Zhou X, Orr MC, Scheu S & Luan YX (2018) Phylogenomics from low-coverage whole-genome sequencing. Methods in Ecology and Evolution, 10: 507-517