Other formats
imd dl_poly xmd xml gulp
Potential plots
Pair function
Density function
Embedding energy function
Titanium EAM potentials available in the literature
R. G. Hennig, T. J. Lenosky, D. R. Trinkle, S. P. Rudin, and J. W. Wilkins, Classical potential describes martensitic phase transformations between the alpha., beta, and omega titanium phases, Phys. Rev. B 78, 054121 .(2008)
D. R. Trinkle, M. D. Jones, R. G. Hennig, S. P. Rudin, R. C. Albers, and J. W. Wilkins, An Empirical Tight-Binding Model for Titanium Phase Transformations, Phys. Rev. B 73, 094123 (2006)
Ref. 2.1 http://www.webelements.com/tantalum/crystal_structure.html
Ref. 2.2 C. Kittel, Introduction to Solid State Physics (Wiley, New York, 2004)
Ref. 2.3 G. Simons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties (MIT Press, Cambridge,MA, 1977)
Ref. 2.4 Metals: Phonon and Electron States, Fermi Surfaces, Edited by K.H. Hellwege et al., New York 1981 (p.142)
Ref. 2.5 Ab initio calculation (vasp) in the present work. paw_gga, 5d34s2, encut=279.6 eV.
Ref. 2.6 K. Maier, M. Peo, B. Saile, H. E. Schaefer, and A. Seeger, Philos. Mag. A 40, 701 (1979)
Ref. 2.7 Ullmaier H, editor. Properties and interaction of atomic defects in metals and alloys. Landolt-Bornstein, New Series, Group III, vol.25. Springer: Berlin; 1991. p. 88.
Ref. 2.8 W. R. Tyson and W. A. Miller, Surf. Sci. 62, 267 (1977)
Ref. 2.9 Y. Mishin and A.Y. Lozovoi, Angular-dependent interatomic potential for tantalum, Acta Materialia 54, 5013 (2006)
Ref. 2.10 R. E. Bedford, G. Bonnier, H. Maas, and F. Pavese, Metrologia 33,133 (1996).
Ref. 2.11 P.F. Paradis, T. Ishikawa, S. Yoda, Noncontact density measurements of tantalum and rhenium in the liquid and undercooled states, Appl. Phys. Lett. 83, 4047 (2003); http://dx.doi.org/10.1063/1.1624475
lammps script to estimate the melting temperature of Ti: Ti.melting.in
MD simulation of two co-existing phases of Tantalum (bcc vs. liquid) in equilibrium at T = K
Elastic constant:
E. S. Fisher and C. J. Renken, Single-Crystal Elastic Moduli and the hcp → bcc Transformation in Ti, Zr, and Hf, Phys. Rev. 135, A482–A494 (1964)
Thermal expansion of h.c.p titanium
J.W. Edwards, R. Speiser and H.L. Johnson, High Temperature Structure and Thermal Expansion of Some Metals as Determined by X‐Ray Diffraction Data. I. Platinum, Tantalum, Niobium, and Molybdenum, J. Appl. Phy., 22, 424 (1951)
D. R. Trinkle, R. G. Hennig, S. G. Srinivasan, D. M. Hatch, M. D. Jones, H. T. Stokes, R. C. Albers, and J. W. Wilkins. A New Mechanism for the Alpha to Omega Martensitic Transformation in Pure Titanium, Phys. Rev. Lett. 91, 025701 (2003)
Atomic packing on plane {110} of bcc Tantalum
Differential displacement map showing the 3-fold compact dislocation core of Ta
The screw component of the Nye tensor of a relaxed a/2<111> screw dislocation in Tantalum
Y. Mishin and A.Y. Lozovoi, Angular-dependent interatomic potential for tantalum, Acta Materialia 54, 5013 (2006)
C.S. Hartley, Y. Mishin, Characterization and visualization of the lattice misfit associate with dislocation cores, Acta Materialia 53, 1313 (2005)
C. Begau, J. Hua, A. Hartmaier A novel approach to study dislocation density tensors and lattice-rotation patterns in atomistic simulations, Journal of the Mechanics and Physics of Solids 60, 711-722, (2012)
P.F. Paradis, T. Ishikawa, S. Yoda, Noncontact density measurements of tantalum and rhenium in the liquid and undercooled states, Appl. Phys. Lett. 83, 4047 (2003); http://dx.doi.org/10.1063/1.1624475