Ag

EAM Potential: Ag.lammps.eam

    Other formats

        imd    dl_poly    xmd    gulp    plot    xml

    Old versions

        1 

Properties Predicted by EAM

Ref. 2.1    http://www.webelements.com/silver/crystal_structure.html

Ref. 2.2    P.L. Williams, Y. Mishin  and J.C. Hamilton, An Embedded-atom Potential for the Cu-Ag System, Modelling Simul. Mater. Sci. Eng. 14, 817 (2006

Ref. 2.3    Y.S. Touloukian, R.K. Kirby, R.E. Taylor, P.D. Desai, Thermal Expansion, Metallic Elements and Alloys, Plenum Press, New York,  1975.

Ref. 2.4    Q.B. Bian, S.K. Bose and R.C. Shukla, Vibrational and Thermodynamic Properties of Metals from a Model Embedded-atom Potential, J. Phys. Chem. Solids, 69, 168 (2008) and reference 46 therein.

Ref. 2.5    B.J. Lee, J.H. Shim and M.I. Baskes, Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method, Phys. Rev. B 68, 144112 (2003) 

Ref. 2.6    J.J. Wollenberger, Physical Metallurgy, edited by R.W. Cahn and P. Hansen (Amsterdam, North-Holland, 1983), p.1139    

Ref. 2.7    W.R. Tyson and W.A. Miller, Surface Sci. 62, 267 (1977)      

Ref. 2.8    Y. Kimura, Y. Qi, T. Cagin, and W.A. Goddard III, The Quantum Sutton-Chen Many-body Potential for Properties of fcc Metals, MRS Symposium Ser. 554 (1999) 43 

Ref. 2.9    http://en.wikipedia.org/wiki/Stacking-fault_energy

Lattice Dynamics

    Lattice constants as a function of temperature  

        

Ref. 3.1   Y.S. Touloukian, R.K. Kirby, R.E. Taylor, P.D. Desai, Thermal Expansion, Metallic Elements and Alloys, Plenum Press, New York,        1975.

Ref. 3.2     M.E. Straumanis and C.L. Woodward, Acta Crystallogr. A27 549 (1971)

            

   Thermal expansion coefficient based on quasiharmonic approximation

            

        

    Elastic constants

        

Ref. 3.3     G. Simons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties (MIT Press, Cambridge, MA, 1977)

        

     

    Pressure-volume equation of state

        

Ref. 3.6     H.K. Mao, P.M. Bell, J.W. Shaner and D.J. Steinberg, Specific volume measurements of Cu, Mo, Pd and Ag and calibration of the ruby R1 fluorescence pressure gauge from 0.06 to 1 Mbar, J. Appl. Phys. 3276 (1978

Ref. 3.7     R.G. McQueen and S.P. Marsh, Equation of State for Nineteen Metallic Elements from Shock-Wave Measurements to Two Megabars, J. Appl. Phys. 31, 1253 (1960)

    

    Phonon dispersion curves

      

      

Ref. 3.8     PWSCF calculation. Ultrasoft pseudopotential Ag.pbe-d-rrkjus.UPF has been used, with a kinetic energy cutoff ecutwfc = 40.0 Ry. Kpoint selection: 11x11x11. Energy minimization of fcc Ag yields a lattice parameter of a = 4.160 Å. For ab initio phonon calculations shown above, the lattice parameter is set to be 4.160 Å.

Ref. 3.9     Q.B. Bian, S.K. Bose and R.C. Shukla, Vibrational and Thermodynamic Properties of Metals from a Model Embedded-atom Potential, J. Phys. Chem. Solids, 69, 168 (2008) and reference 46 therein.

   

Crystal Structures

        

        

Generalized Stacking Fault Energy

    Stacking fault along [101] and [121] directions

    

        

    Silver gamma surface evaluated with the EAM potential

    

    Comparison of ab initio and EAM calculations of SF energies

    

Deformation Path

    The Bain path

 

fcc: c/a = 1.0

  bcc: c/a = 0.707

    Engergy contours along the Bain path (EAM calculations, Ag)

    Comparison of ab intio and EAM calculations along the Bain path

        

Surface Relaxation 

Liquid Structure

    Liquid density: EAM vs. experiment

    

    

Ref: 8.2     http://en.wikipedia.org/wiki/Silver

    Pair correlation functions

    

        

    Structure factors

    

        

    Comparison of experimental structure factors and EAM calculations      

    

        

    

    

Ref. 8.2. Y. Waseda, The Structure of Non-Crystalline Materials (McGraw-Hill, New York, 1980).

 

Ref. 8.3.  M. M. G. Alemany, O. Diéguez, C. Rey, and L. J. Gallego, Molecular-dynamics study of the dynamic properties of fcc

transition and simple metals in the liquid phase using the second-moment approximation to the tight-binding method, Phys. Rev. B 60, 9208 - 9211 (1999)

Liquid Dynamics

    Diffusivity based on the Einstein relation

 Ref. 9.1. A.V. Gorshkov, Correlations of the self-diffusion coefficients and viscosity of elemental melts with properties of     elements,     Inorganic Materials, 2, 218 (2000) Doi: 10.1007/BF02758020

    Diffusivity based on the Green-Kubo relation

        

        

    van Hove self-correlation functions at different temperatures

    Intermediate scattering functions F(q,t)  and dynamic structure factors S(q,w)