L. Zhong, J. Wang, H. Sheng, Z. Zhang and S.X. Mao, Formation of monatomic metallic glasses through ultrafast liquid quenching, Nature 512, 177 (2014)
imd dl_poly gulp
Pair function
Density function
Embedding energy function
R. Ravelo, T.C. Germann, O. Guerrero, Q. An, B.L. Holian, Shock-induced plasticity in tantalum single crystals: Interatomic potentials and large-scale molecular-dynamics simulations, PRB 88, 134101 (2013)
X. D. Dai, J. H. Li, and Y. Kong, Long-range empirical potential for the bcc structured transition metals, Phys. Rev. B 75, 052102 (2007).
Y. Mishin and A.Y. Lozovoi, Angular-dependent interatomic potential for tantalum, Acta Materialia 54, 5013 (2006)
A. Strachan, T. Çagin, O. Gülseren, S. Mukherjee, R. E Cohen, and W.A. GoddardIII, First principles force field for metallic tantalum Modelling and Simulation in Materials Science and Engineering 12, S445 (2004)
Y.H. Li, D.J. Siegel, J. B. Adams, and X.Y. Liu, Embedded-atom-method tantalum potential developed by the force-matching method, PRB 67, 125101 (2003)
B-J. Lee, M.I. Baskes, H.Kim, Y.K. Cho, Second nearest-neighbor modified embedded atom method potentials for bcc transition metals, PRB 64, 184102 (2001)
Ref. 2.1 http://www.webelements.com/tantalum/crystal_structure.html
Ref. 2.2 C. Kittel, Introduction to Solid State Physics (Wiley, New York, 2004)
Ref. 2.3 G. Simons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties (MIT Press, Cambridge,MA, 1977)
Ref. 2.4 Metals: Phonon and Electron States, Fermi Surfaces, Edited by K.H. Hellwege et al., New York 1981 (p.142)
Ref. 2.5 Ab initio calculation (vasp) in the present work. paw_gga, 5d34s2, encut=279.6 eV.
Ref. 2.6 K. Maier, M. Peo, B. Saile, H. E. Schaefer, and A. Seeger, Philos. Mag. A 40, 701 (1979)
Ref. 2.7 Ullmaier H, editor. Properties and interaction of atomic defects in metals and alloys. Landolt-Bornstein, New Series, Group III, vol.25. Springer: Berlin; 1991. p. 88.
Ref. 2.8 W. R. Tyson and W. A. Miller, Surf. Sci. 62, 267 (1977)
Ref. 2.9 Y. Mishin and A.Y. Lozovoi, Angular-dependent interatomic potential for tantalum, Acta Materialia 54, 5013 (2006)
Ref. 2.10 R. E. Bedford, G. Bonnier, H. Maas, and F. Pavese, Metrologia 33,133 (1996).
Ref. 2.11 P.F. Paradis, T. Ishikawa, S. Yoda, Noncontact density measurements of tantalum and rhenium in the liquid and undercooled states, Appl. Phys. Lett. 83, 4047 (2003); http://dx.doi.org/10.1063/1.1624475
Ref. 2.12 N. Jakse, O. Le Bacq, and A. Pasturel, Prediction of the local structure of liquid and supercooled tantalum, Phys. Rev. B 70, 174203 (2004)
lammps script to estimate the melting temperature of Ta: Ta.melting.in
MD simulation of two co-existing phases of Tantalum (bcc vs. liquid) in equilibrium at T = 3285 K
[a]. J. Prakash, L. P. Pathak and M. P. Hemkar, Phonon Dispersion Relations for Chromium and Tantalum, Aust. J. Phys., 28, 57 (1975)
[b]. A.B.D. Woods, Lattice Dynamics of Tantalum, Phys. Rev. 136, A781–A783 (1964)
[c]. Z.L. Liu, L.C. Cai, X.R. Chen, Q. Wu and F.Q. Jing, Ab initio refinement of the thermal equation of state for bcc tantalum: the effect of bonding on anharmonicity, J. Phys. Cond. Matt. 21, 095408 (2009)
[c]. Metals: Phonon and Electron States, Fermi Surfaces, Edited by K.H. Hellwege et al., New York 1981 (p.142)
Thermal expansion of b.c.c Tantalum
J.W. Edwards, R. Speiser and H.L. Johnson, High Temperature Structure and Thermal Expansion of Some Metals as Determined by X‐Ray Diffraction Data. I. Platinum, Tantalum, Niobium, and Molybdenum, J. Appl. Phy., 22, 424 (1951)
A. Dewaele, P. Loubeyre P and M. Mezouar, Refinement of the equation of state of tantalum, Phys. Rev. B 69, 092106 (2004)
H. Cynn and C.S. Yoo, Equation of state of tantalum to 174 GPa, Phys. Rev. B 59, 8526 (1999)
L.Y. Tang, L. Liu, W. S. Xiao, Y.C.Li, X.D. Li, and B. Yan, Equation of State of Tantalum up to 133 GPa, Chin. Phys. Lett. 27, 016402 (2010)
O. Gulseren and R.E. Cohen, High-pressure thermoelasticity of body-centered-cubic tantalum, Phys. Rev. B65, 064103 (2002)
K. Tillmann, A. Thust, A. Gerber, M. P. Weides, and K. Urban1, Atomic Structure of beta-Tantalum Nanocrystallites, Microsc. & microanal. 11 (2005) 534
Differential displacement map showing the 3-fold compact dislocation core of Ta
The screw component of the Nye tensor of a relaxed a/2<111> screw dislocation in Tantalum
Y. Mishin and A.Y. Lozovoi, Angular-dependent interatomic potential for tantalum, Acta Materialia 54, 5013 (2006)
C.S. Hartley, Y. Mishin, Characterization and visualization of the lattice misfit associate with dislocation cores, Acta Materialia 53, 1313 (2005)
C. Begau, J. Hua, A. Hartmaier A novel approach to study dislocation density tensors and lattice-rotation patterns in atomistic simulations, Journal of the Mechanics and Physics of Solids 60, 711-722, (2012)
P.F. Paradis, T. Ishikawa, S. Yoda, Noncontact density measurements of tantalum and rhenium in the liquid and undercooled states, Appl. Phys. Lett. 83, 4047 (2003); http://dx.doi.org/10.1063/1.1624475