imd dl_poly xmd xml gulp plot
1
Ref. 3.1. Y.S. Touloukian, R.K. Kirby, R.E. Taylor, P.D. Desai, Thermal Expansion, Metallic Elements and Alloys, Plenum Press, New York, 1975.
Ref. 3.2. J. Bandopadhyay and K.P. Gupta, Cryogenics 18, 54 (1978)
Ref: G.N. Kamm, and G.A. Alers, Low-temperature elastic moduli of aluminum, JAP, 35, 327-330 (1964)
[a]. Y. Mishin, D. Farkas, M.J. Mehl, and D.A. Papaconstantopoulos, "Interatomic potentials for monoatomic metals from experimental data and ab initio calculations," Phys. Rev. B 59, 3393 (1999)
[b]. PWSCF calculation. Ultrasoft pseudopotential (Al.vbc.UPF) has been used, with a kinetic energy cutoff ecutwfc = 25.0 Ry. Kpoint selection: 11x11x11.
[c]. R. Stedman and G. Nilsson, "Dispersion relations for phonons in aluminum at 80 and 300 K", Phys. Rev. 145, 492 (1966).
fcc: c/a = 1.0
bcc: c/a = 0.707
Ref: M.J. Assael, et al., Reference data for the density and viscosity of liquid aluminum and liquid iron. Journal of Physical and Chemical Reference Data, 35, (1), 285-300 (2006) (doi:10.1063/1.2149380)
Ref. 8.2. Y. Waseda, The Structure of Non-Crystalline Materials (McGraw-Hill, New York, 1980).
Ref. 8.3. M. M. G. Alemany, O. Diéguez, C. Rey, and L. J. Gallego, Molecular-dynamics study of the dynamic properties of fcc
transition and simple metals in the liquid phase using the second-moment approximation to the tight-binding method, Phys. Rev. B 60, 9208 - 9211 (1999)
Ref. 8.4. J. M. Stallard and C. M. Davis, Aluminum Structure Factor by Neutron Diffraction, Phys. Rev. A 8, 368 - 376 (1973)
Ref. 9.1. A.V. Gorshkov, Correlations of the self-diffusion coefficients and viscosity of elemental melts with properties of elements, Inorganic Materials, 2, 218 (2000) Doi: 10.1007/BF02758020