imd dl_poly xmd gulp plot
1
Ref. 2.1 Y. Mishin, D. Farkas, M.J. Mehl, and D.A. Papaconstantopolous, Interatomic Potentials for Monoatomic Metals from Experimental Data and ab initio calculations, Phys. Rev. B 59, 3393 (1999)
Ref. 2.2 B.J. Lee, J.H. Shim and M.I. Baskes, Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method, Phys. Rev. B 68, 144112 (2003)
Ref. 2.3 G. Simons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties (MIT Press, Cambridge, MA, 1977)
Ref. 2.4 http://www.webelements.com/nickel/physics.html
Ref. 2.5 R. J. Birgenau, J. Cordes, G. Dolling, and A. D. B. Woods, "Normal Modes of vibration of Nickel", Phys. Rev. 136 A1359 (1964).
Ref. 2.6 Ab initio calculation in the present work. (spin unpolarized).
Ref. 3.1 Y.S. Touloukian, R.K. Kirby, R.E. Taylor, P.D. Desai, Thermal Expansion, Metallic Elements and Alloys, Plenum Press, New York, 1975.
Ref. 4.1 G. Simons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties (MIT Press, Cambridge, MA, 1977)
Ref. 5.1 PWSCF calculation. Ultrasoft pseudopotential (Ni.pbe-nd-rrkjus.UPF) has been used, with a kinetic energy cutoff ecutwfc = 27.0 Ry. Kpoint selection: 11x11x11.
Ref. 5.2 R. J. Birgenau, J. Cordes, G. Dolling, and A. D. B. Woods, "Normal Modes of vibration of Nickel", Phys. Rev. 136 A1359 (1964).
Ref. 5.3 Y. Mishin, D. Farkas, M.J. Mehl, and D.A. Papaconstantopoulos, "Interatomic potentials for monoatomic metals from experimental data and ab initio calculations," Phys. Rev. B 59, 3393 (1999)
fcc: c/a = 1.0
bcc: c/a = 0.707
Ref. 8.1 http://en.wikipedia.org/wiki/Nickel
Structure factors
Ref. 8.2. Y. Waseda, The Structure of Non-Crystalline Materials (McGraw-Hill, New York, 1980).
Ref. 8.3. M. M. G. Alemany, O. Diéguez, C. Rey, and L. J. Gallego, Molecular-dynamics study of the dynamic properties of fcc
transition and simple metals in the liquid phase using the second-moment approximation to the tight-binding method, Phys. Rev. B 60, 9208 - 9211 (1999)
Ref. 9.1 P. Protopapas, H.C. Andersen, and N.A.D. Parlee, Theory of transport in liquid metals. I. Calculation of self-diffusion coefficients, J. Chem. Phys. 59, 15 (1973)
Ref. 9.2 F.J. Cherne, M.I. Baskes, P.A. Deymier, Properties of liquid nickel: A critical comparison of EAM and MEAM calculations, Phys. Rev. B 65, 024209 (2002)
Ref. 9.3 S. M. Chathoth, A. Meyer, M.M. Koza, and F. Juranyi, Atomic diffusion in liquid Ni, NiP, PdNiP, and PdNiCuP alloys, Appl. Phys. Lett. 85, 4881 (2004)