Al

EAM Potential: Al.lammps.eam

    Other formats

        imd    dl_poly    xmd    xml    gulp    plot     

    Old versions

        1 

Properties Predicted by EAM

Lattice Dynamics

    Lattice constants as a function of temperature

    

    

Ref. 3.1. Y.S. Touloukian, R.K. Kirby, R.E. Taylor, P.D. Desai, Thermal Expansion, Metallic Elements and Alloys, Plenum Press, New York,        1975.

Ref. 3.2.     J. Bandopadhyay and K.P. Gupta, Cryogenics 18, 54 (1978)

            

     Thermal expansion coefficient based on quasiharmonic approximation

    

        

    Elastic Constants

    

        Ref: G.N. Kamm, and G.A. Alers, Low-temperature elastic moduli of aluminum, JAP, 35, 327-330 (1964)

    

    Phonon Dispersion Curves

        

    

[a]. Y. Mishin, D. Farkas, M.J. Mehl, and D.A. Papaconstantopoulos, "Interatomic potentials for monoatomic metals from experimental data and ab initio calculations," Phys. Rev. B 59, 3393 (1999)

[b]. PWSCF calculation. Ultrasoft pseudopotential (Al.vbc.UPF) has been used, with a kinetic energy cutoff ecutwfc = 25.0 Ry. Kpoint selection: 11x11x11.

[c]. R. Stedman and G. Nilsson, "Dispersion relations for phonons in aluminum at 80 and 300 K", Phys. Rev. 145, 492 (1966).

Crystal Structures

    

    

Generalized Stacking Fault Energy

    Stacking fault along [101] and [121] directions

 

    Aluminum gamma surface evaluated with the EAM potential

        

    Comparison of ab initio and EAM calculations of SF energies

    

Deformation Path

    The Bain path

 

fcc: c/a = 1.0

  bcc: c/a = 0.707

    Engergy contours along the Bain path (EAM calculations)

        

    Comparison of ab intio and EAM calculations along the Bain path

        

Surface Relaxation 

Liquid Structure

    Liquid density: EAM vs. experiment

    

Ref: M.J. Assael, et al., Reference data for the density and viscosity of liquid aluminum and liquid iron. Journal of Physical and Chemical Reference Data, 35, (1), 285-300 (2006) (doi:10.1063/1.2149380)

    Pair correlation functions

    

    

    Structure factors

    

    

    Comparison of experimental structure factors and EAM calculations      

    

    

    

Ref. 8.2. Y. Waseda, The Structure of Non-Crystalline Materials (McGraw-Hill, New York, 1980).

 

Ref. 8.3.  M. M. G. Alemany, O. Diéguez, C. Rey, and L. J. Gallego, Molecular-dynamics study of the dynamic properties of fcc

transition and simple metals in the liquid phase using the second-moment approximation to the tight-binding method, Phys. Rev. B 60, 9208 - 9211 (1999)

          Ref. 8.4.  J. M. Stallard and C. M. Davis, Aluminum Structure Factor by Neutron Diffraction, Phys. Rev. A 8, 368 - 376 (1973)

Liquid Dynamics

    Diffusivity based on the Einstein relation

            

 Ref. 9.1. A.V. Gorshkov, Correlations of the self-diffusion coefficients and viscosity of elemental melts with properties of     elements,     Inorganic Materials, 2, 218 (2000) Doi: 10.1007/BF02758020

    Diffusivity based on the Green-Kubo relation

        

    van Hove self-correlation functions at different temperatures

    Intermediate scattering functions F(q,t)  and dynamic structure factors S(q,w)