Rh

EAM Potential: Rh.lammps.eam

    Other formats

        imd    dl_poly    xmd    gulp    plot     

    Old versions

        1 

Properties Predicted by EAM

Ref. 2.1    http://www.webelements.com/rhodium/crystal_structure.html

Ref. 2.2    M. Nuding and M. Ellner, Influence of the isotypical A9, A10 and B11 solvents on the partial atomic volume of tin , J. Alloys Compd. (1997) 252, 184-191    

Ref. 2.3    G. Simons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties (MIT Press, Cambridge,MA, 1977)

Ref. 2.4    A. Eichler, K.P. Bohnen, W. Reichardt, and J. Hafner, Phonon dispersion relation in rhodium: Ab initio calculations and neutron-scattering investigations, Phys. Rev. B57, 324 (1998) 

Ref. 2.5    http://www.answers.com/topic/rhodium

Ref. 2.6   N. M. Rosengaard and H. L. Skriver, Phys. Rev. B 47, 12 865 (1993).

Ref. 2.7  S. Grussendorff, N.Chetty and H. Dreysse, Theoretical studies of iridium under pressure, J. Phys.: Condens. Matter 15 4127 (2003)

Ref. 2.8    F. R. de Boer, R. Boom, W. C. M. Mattens, A. R. Miedema, and A. K. Niessen, Cohesion

in Metals (North-Holland, Amsterdam, 1988), Vol. 1. 

Ref. 2.9    D. A. Papaconstantopoulos and M. J. Mehl, Realistic Tight-Binding Methodologies

Ref. 2.10   Y. Kimura, Y. Qi, T. Cagin, and W.A. Goddard III, The Quantum Sutton-Chen Many-body Potential for Properties of fcc Metals, MRS Symposium Ser. 554 (1999) 43 

     

Lattice Dynamics

    Lattice constants as a function of temperature  

        

Ref. 3.1   Y.S. Touloukian, R.K. Kirby, R.E. Taylor, P.D. Desai, Thermal Expansion, Metallic Elements and Alloys, Plenum Press, New York,        1975.

            

   Thermal expansion coefficient based on quasiharmonic approximation

    

            

      

    Elastic Constants

        

Ref. 4.1     G. Simons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties (MIT Press, Cambridge, MA, 1977)

        

    

    Phonon Dispersion Curves

    

Ref. 5.1     PWSCF calculations. Ultrasoft pseudopotential Rh.pbe-rrkjus.UPF (GGA) has been used, with a kinetic energy cutoff ecutwfc = 35.0 Ry. Kpoint selection: 11x11x11. Energy minimization of fcc Rh yields a lattice parameter of a = 3.8512 Å corresponding to the lowest binding energy. 

Ref. 5.2    A. Eichler, K.P. Bohnen, W. Reichardt, and J. Hafner, Phonon dispersion relation in rhodium: Ab initio calculations and neutron-scattering investigations, Phys. Rev. B57, 324 (1998) 

Crystal Structures

        

Generalized Stacking Fault Energy

    Stacking fault along [101] and [121] directions

  

    Rhodium gamma surface evaluated with the EAM potential

    

        

    Comparison of ab initio and EAM calculations of SF energies (F.C.C. Rh, a = 3.796 Å)

    

Deformation Path

    The Bain path

 

fcc: c/a = 1.0

  bcc: c/a = 0.707

    Engergy contours along the Bain deformation path (EAM calculations, FCC Rh, 3.8269 Å)

    

    Comparison of ab intio and EAM calculations along the Bain path

Surface Relaxation 

Liquid Structure

    Liquid density: EAM vs. experiment

   

      

Ref. 8.1     P.F. Paradis, T. Ishikawa, and S. Yoda, Thermophysical property measurements of supercooled and liquid rhodium, International journal of thermophysics 24,1121-1136 (2003)

Ref. 8.2    http://en.wikipedia.org/wiki/Rhodium

    Pair correlation functions

    

        

    Structure factors

    

        

    

    Comparison of experimental and computational RDF of liquid Rh    

    

            Left:    EAM calculation. 

    

            Right:   Radial distribution functions in solid Rh at 2060 K (dashed line) and liquid Rh at 2240 K (solid line) compared with Molecular Dynamics simulations performed at 2500 K using a previously proposed potential [F. Cleri and V. Rosato. Phys. Rev. B 48, 22 (1993)] dot–dashed line. Source: A. Filipponi, A. Di Cicco, G. Aquilanti, M. Minicucci, S.D. Panfilis, J. Rybicki, Short-range structure of liquid palladium and  rhodium at very high temperatures, J. Non-Crys. Solids 250-252,172 (1999)

                

Liquid Dynamics

    Diffusivity based on the Einstein relation

    Diffusivity based on the Green-Kubo relation

        

    van Hove self-correlation functions at different temperatures

    Intermediate scattering functions F(q,t)  and dynamic structure factors S(q,w)