imd dl_poly xmd gulp plot
1
Ref. 2.1 http://www.webelements.com/rhodium/crystal_structure.html
Ref. 2.2 M. Nuding and M. Ellner, Influence of the isotypical A9, A10 and B11 solvents on the partial atomic volume of tin , J. Alloys Compd. (1997) 252, 184-191
Ref. 2.3 G. Simons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties (MIT Press, Cambridge,MA, 1977)
Ref. 2.4 A. Eichler, K.P. Bohnen, W. Reichardt, and J. Hafner, Phonon dispersion relation in rhodium: Ab initio calculations and neutron-scattering investigations, Phys. Rev. B57, 324 (1998)
Ref. 2.5 http://www.answers.com/topic/rhodium
Ref. 2.6 N. M. Rosengaard and H. L. Skriver, Phys. Rev. B 47, 12 865 (1993).
Ref. 2.7 S. Grussendorff, N.Chetty and H. Dreysse, Theoretical studies of iridium under pressure, J. Phys.: Condens. Matter 15 4127 (2003)
Ref. 2.8 F. R. de Boer, R. Boom, W. C. M. Mattens, A. R. Miedema, and A. K. Niessen, Cohesion
in Metals (North-Holland, Amsterdam, 1988), Vol. 1.
Ref. 2.9 D. A. Papaconstantopoulos and M. J. Mehl, Realistic Tight-Binding Methodologies
Ref. 2.10 Y. Kimura, Y. Qi, T. Cagin, and W.A. Goddard III, The Quantum Sutton-Chen Many-body Potential for Properties of fcc Metals, MRS Symposium Ser. 554 (1999) 43
Ref. 3.1 Y.S. Touloukian, R.K. Kirby, R.E. Taylor, P.D. Desai, Thermal Expansion, Metallic Elements and Alloys, Plenum Press, New York, 1975.
Ref. 4.1 G. Simons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties (MIT Press, Cambridge, MA, 1977)
Ref. 5.1 PWSCF calculations. Ultrasoft pseudopotential Rh.pbe-rrkjus.UPF (GGA) has been used, with a kinetic energy cutoff ecutwfc = 35.0 Ry. Kpoint selection: 11x11x11. Energy minimization of fcc Rh yields a lattice parameter of a = 3.8512 Å corresponding to the lowest binding energy.
Ref. 5.2 A. Eichler, K.P. Bohnen, W. Reichardt, and J. Hafner, Phonon dispersion relation in rhodium: Ab initio calculations and neutron-scattering investigations, Phys. Rev. B57, 324 (1998)
fcc: c/a = 1.0
bcc: c/a = 0.707
Ref. 8.1 P.F. Paradis, T. Ishikawa, and S. Yoda, Thermophysical property measurements of supercooled and liquid rhodium, International journal of thermophysics 24,1121-1136 (2003)
Ref. 8.2 http://en.wikipedia.org/wiki/Rhodium
Left: EAM calculation.
Right: Radial distribution functions in solid Rh at 2060 K (dashed line) and liquid Rh at 2240 K (solid line) compared with Molecular Dynamics simulations performed at 2500 K using a previously proposed potential [F. Cleri and V. Rosato. Phys. Rev. B 48, 22 (1993)] dot–dashed line. Source: A. Filipponi, A. Di Cicco, G. Aquilanti, M. Minicucci, S.D. Panfilis, J. Rybicki, Short-range structure of liquid palladium and rhodium at very high temperatures, J. Non-Crys. Solids 250-252,172 (1999)