imd dl_poly xmd gulp plot
1
Ref. 2.1 http://www.webelements.com/gold/crystal_structure.html
Ref. 2.2 B.J. Lee, J.H. Shim and M.I. Baskes, Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method, Phys. Rev. B 68, 144112 (2003)
Ref. 2.3 G. Simons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties (MIT Press, Cambridge,MA, 1977)
Ref. 2.4 J.W. Lynn, H.G. Smith, and R.M. Nicklow, Lattice Dynamics of Gold, Phys. Rev. B 8, 3493–3499 (1973)
Ref. 2.5 S. M. Foiles, M. I. Baskes, and M. S. Daw, Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys, Phys. Rev. B33, 7983 (1986)
Ref. 2.6 G. Grochola, S. P. Russo, and I. K. Snook, On fitting a gold embedded atom method potential using the force matching method, J. Chem. Phys. 123, 204719 (2005)
Ref. 2.7 S. Oliver, R. Conte and A. Fortunelli, Derivation of an empirical potential for gold with angular corrections, Phys. Rev. B 77 054104 (1994)
Ref. 2.8 Y. Kimura, Y. Qi, T. Cagin, and W.A. Goddard III, The Quantum Sutton-Chen Many-body Potential for Properties of fcc Metals, MRS Symposium Ser. 554 (1999) 43
Ref. 2.9 S. Ryu, C. R. Weinberger, M. I. Baskes, W. Cai, Improved modified embedded-atom method potentials for gold and silicon, Modelling Simul. Mater. Sci. Eng. 17 075008 (2009)
Ref. 2.10 The two-phase equilibrium method was used to obtain the melting point of Au, see.e.g. S.Yoo, X.C. Zeng, J.R. Morris, The melting lines of model silicon calculated from coexisting solid-liquid phases, J. Chem. Phys, 120, 1655 (2004)
A snapshot of Au melting at 1281 K and ambient pressure (nph ensemble) is shown here.
Ref. 2.11 Balk, T. J., and Hemker, K. J., 2001, Phil. Mag. A, 81, 1507. (32 mJ/m^2 SFE).
Ref. 3.1 Y.S. Touloukian, R.K. Kirby, R.E. Taylor, P.D. Desai, Thermal Expansion, Metallic Elements and Alloys, Plenum Press, New York, 1975.
Ref. 3.2 G. Simons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties (MIT Press, Cambridge, MA, 1977)
Pressure-volume equation of state
Ref. 3.3 M. Yokoo, M. Kawai, K.G. Nakamura, K. Kondo, Y. Tange, and T. Tsuchiya, Ultrahigh-pressure scales for gold and platinum at pressures up to 550 GPa, Phys. Rev. B 80, 104114 (2009)
Ref. 3.4 M. Matsui, High temperature and high pressure equation of state of gold, J. Phys. Conf. Series 215, 012197 (2010)
Ref. 3.5 R.G. McQueen and S.P. Marsh, Equation of State for Nineteen Metallic Elements from Shock-Wave Measurements to Two Megabars, J. Appl. Phys. 31, 1253 (1960)
Ref. 5.1 PWSCF calculations. Ultrasoft pseudopotential Au.pbe-nd-rrkjus.UPF (GGA) has been used, with a kinetic energy cutoff ecutwfc = 45.0 Ry. Kpoint selection: 11x11x11. Energy minimization of fcc Au yields a lattice parameter of a = 4.123 Å corresponding to the lowest binding energy.
Ref. 5.2 J.W. Lynn, H.G. Smith, and R.M. Nicklow, Lattice Dynamics of Gold, Phys. Rev. B 8, 3493–3499 (1973)
fcc: c/a = 1.0
bcc: c/a = 0.707
Ref. 8.1 P.F. Paradisa, T. Ishikawa, and N. Koike, Density of liquid gold measured by a non-contact technique, Gold Bulletin, 41, 242-245 (2008)
Ref. 8.2 http://en.wikipedia.org/wiki/Gold (17.31 g/cm3)
Ref. 8.3. Y. Waseda, The Structure of Non-Crystalline Materials (McGraw-Hill, New York, 1980).
Ref. 8.4. M. M. G. Alemany, O. Diéguez, C. Rey, and L. J. Gallego, Molecular-dynamics study of the dynamic properties of fcc
transition and simple metals in the liquid phase using the second-moment approximation to the tight-binding method, Phys. Rev. B 60, 9208 - 9211 (1999)
** A damping factor of exp(- gamma q^2) was applied to calculate the structure factors.