imd dl_poly xmd gulp plot
1
Ref. 2.1 http://www.webelements.com/palladium/crystal_structure.html
Ref. 2.2 B.J. Lee, J.H. Shim and M.I. Baskes, Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method, Phys. Rev. B 68, 144112 (2003)
Ref. 2.3 A.P. Miller and B.N. Brockhouse, Anomalous Behavior of the Lattice Vibrations and the Electronic Specific Heat of Palladium, Phys. Rev. Lett, 20, 798 (1968)
Ref. 2.4 S. M. Foiles, M. I. Baskes, and M. S. Daw, Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys, Phys. Rev. B33, 7983 (1986)
Ref. 2.5 W.R. Tyson and W. A. Miller,Surface free energies of solid metals: Estimation from liquid surface tension measurements, Surf. Sci. 149, 407 (1977)
* This low-temperature elastic anomaly has been discussed elsewhere, e.g., R. J. Wolf, K. A. Mansour, M.W. Lee and J. R. Ray, Temperature dependence of elastic constants of embedded-atom models of palladium, Phys. Rev. B 46, 8027–8035 (1992)
Ref. 3.1 Y.S. Touloukian, R.K. Kirby, R.E. Taylor, P.D. Desai, Thermal Expansion, Metallic Elements and Alloys, Plenum Press, New York, 1975.
Ref. 3.2 H.W. King and F.D. Manchester, A low-temperature X-ray diffraction study of Pd and some Pd-H alloys, J. Phys. F: Met. Phys. 8 15 (1978)
Ref. 3.3 A.K. Giri and G. B. Mitra, Extrapolated values of lattice constants of some cubic metals at absolute zero, J. Phys. D: Appl. Phys. 18 L75 (1985)
Ref. 3.4 G. Simons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties (MIT Press, Cambridge, MA, 1977)
Ref. 3.5 H.K. Mao, P.M. Bell, J.W. Shaner and D.J. Steinberg, Specific volume measurements of Cu, Mo, Pd and Ag and calibration of the ruby R1 fluorescence pressure gauge from 0.06 to 1 Mbar, J. Appl. Phys. 3276 (1978)
Ref. 3.6 PWSCF calculation. Ultrasoft pseudopotential Pd.pbe-rrkjus.UPF has been used, with a kinetic energy cutoff ecutwfc = 35.0 Ry. Kpoint selection: 11x11x11. Energy minimization of fcc Pd yields a lattice parameter of a = 3.974 Å. For ab initio phonon calculations shown above, the lattice parameter is set to be 3.974 Å.
Ref. 3.7 Q.B. Bian, S.K. Bose and R.C. Shukla, Vibrational and Thermodynamic Properties of Metals from a Model Embedded-atom Potential, J. Phys. Chem. Solids, 69, 168 (2008) and reference 46 therein.
Phonon anomalies at low temperatures:
A.P. Miller and B.N. Brockhouse, Anomalous Behavior of the Lattice Vibrations and the Electronic Specific Heat of Palladium, Phys. Rev. Lett, 20, 798 (1968)
D.A. Stewart, Ab initio investigation of phonon dispersion and anomalies in palladium, New J. Phys. 10, 043025 (2008)
fcc: c/a = 1.0
bcc: c/a = 0.707
Ref. 8.1 P.-F. Paradis, T. Ishikawa, Y. Saita, and S. Yoda, Containerless Property Measurements of Liquid, International Journal of Thermophysics, 25, 1905 (2004)
Ref. 8.2 http://en.wikipedia.org/wiki/Palladium
Ref. 8.3 A. Filipponi, A. Di Cicco, G. Aquilanti, M. Minicucci, S.D. Panfilis, J. Rybicki, Short-range structure of liquid palladium and rhodium at very high temperatures, J. Non-Crys. Solids 250-252,172 (1999)
Ref. 8.4 A. Filipponi, A Di Cicco, and S. De Panfilis, Structure of Undercooled liquid Pd probed by X-ray Absorption Spectroscopy, Phys. Rev. Lett. 83, 560 (1999)
Ref. 8.5. Y. Waseda, The Structure of Non-Crystalline Materials (McGraw-Hill, New York, 1980).
Ref. 8.6. M. M. G. Alemany, O. Diéguez, C. Rey, and L. J. Gallego, Molecular-dynamics study of the dynamic properties of fcc
transition and simple metals in the liquid phase using the second-moment approximation to the tight-binding method, Phys. Rev. B 60, 9208 - 9211 (1999)
Ref. 9.1. M.M.G. Alemany, O. Diéguez, C. Rey and L.J. Gallego, Molecular-dynamics study of the dynamic properties of fcc transition and simple metals in the liquid phase using the second-moment approximation to the tight-binding method, Phys. Rev. B 60, 9208 (1999)
Ref. 9.2 J. Mei and J.W. Davenport, Molecular-dynamics study of self-diffusion in liquid transition metals, Phys. Rev. B 42 9682 (1990)