Pd

EAM Potential: Pd.lammps.eam

    Other formats

        imd    dl_poly    xmd    gulp    plot     

    Old versions

        1 

Properties Predicted by EAM

Ref. 2.1    http://www.webelements.com/palladium/crystal_structure.html

Ref. 2.2     B.J. Lee, J.H. Shim and M.I. Baskes, Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method, Phys. Rev. B 68, 144112 (2003) 

Ref. 2.3    A.P. Miller and B.N. Brockhouse, Anomalous Behavior of the Lattice Vibrations and the Electronic Specific Heat of Palladium, Phys. Rev. Lett, 20, 798 (1968)

Ref. 2.4    S. M. Foiles, M. I. Baskes, and M. S. Daw, Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys, Phys. Rev. B33, 7983 (1986)

Ref. 2.5    W.R. Tyson and W. A. Miller,Surface free energies of solid metals: Estimation from liquid surface tension measurements, Surf. Sci. 149, 407 (1977)

* This low-temperature elastic anomaly has been discussed elsewhere, e.g., R. J. Wolf, K. A. Mansour, M.W. Lee and J. R. Ray, Temperature dependence of elastic constants of embedded-atom models of palladium, Phys. Rev. B 46, 8027–8035 (1992)

Lattice Dynamics

    Lattice constants as a function of temperature  

        

Ref. 3.1   Y.S. Touloukian, R.K. Kirby, R.E. Taylor, P.D. Desai, Thermal Expansion, Metallic Elements and Alloys, Plenum Press, New York,        1975.

Ref. 3.2     H.W. King and F.D. Manchester, A low-temperature X-ray diffraction study of Pd and some Pd-H alloys, J. Phys. F: Met. Phys. 8 15 (1978)

Ref. 3.3    A.K. Giri and G. B. Mitra,  Extrapolated values of lattice constants of some cubic metals at absolute zero, J. Phys. D: Appl. Phys. 18 L75 (1985)

            

   Thermal expansion coefficient based on quasiharmonic approximation

       

        

    http://www.platinummetalsreview.com/jmpgm/

    Elastic constants

        

Ref. 3.4     G. Simons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties (MIT Press, Cambridge, MA, 1977)

        

    Pressure-volume equation of state

    

        

Ref. 3.5    H.K. Mao, P.M. Bell, J.W. Shaner and D.J. Steinberg, Specific volume measurements of Cu, Mo, Pd and Ag and                   calibration of the ruby R1 fluorescence pressure gauge from 0.06 to 1 Mbar, J. Appl. Phys. 3276 (1978)

    Phonon dispersion curves

    

Ref. 3.6     PWSCF calculation. Ultrasoft pseudopotential Pd.pbe-rrkjus.UPF has been used, with a kinetic energy cutoff ecutwfc = 35.0 Ry. Kpoint selection: 11x11x11. Energy minimization of fcc Pd yields a lattice parameter of a = 3.974 Å. For ab initio phonon calculations shown above, the lattice parameter is set to be 3.974 Å.

Ref. 3.7     Q.B. Bian, S.K. Bose and R.C. Shukla, Vibrational and Thermodynamic Properties of Metals from a Model Embedded-atom Potential, J. Phys. Chem. Solids, 69, 168 (2008) and reference 46 therein. 

Phonon anomalies at low temperatures: 

A.P. Miller and B.N. Brockhouse, Anomalous Behavior of the Lattice Vibrations and the Electronic Specific Heat of Palladium, Phys. Rev. Lett, 20, 798 (1968)

D.A. Stewart, Ab initio investigation of phonon dispersion and anomalies in palladium, New J. Phys. 10, 043025 (2008)

Crystal Structures

        

Generalized Stacking Fault Energy

    Stacking fault along [101] and [121] directions

  

        

    Palladium gamma surface evaluated with the EAM potential

    

    

    Comparison of ab initio and EAM calculations of SF energies (F.C.C. Pd)

    

Deformation Path

    The Bain path

 

fcc: c/a = 1.0

  bcc: c/a = 0.707

    Engergy contours along the Bain deformation path (EAM calculations, palladium)

    

        

    Comparison of ab intio and EAM calculations along the Bain path

        

Surface Relaxation 

Liquid Structure

    Liquid density: EAM vs. experiment

            

    

Ref. 8.1    P.-F. Paradis, T. Ishikawa, Y. Saita, and S. Yoda,  Containerless Property Measurements of Liquid,  International Journal of Thermophysics, 25, 1905 (2004) 

Ref. 8.2    http://en.wikipedia.org/wiki/Palladium

    Pair correlation functions

    

        

    

                        

            

            Ref. 8.3    A. Filipponi, A. Di Cicco, G. Aquilanti, M. Minicucci, S.D. Panfilis, J. Rybicki, Short-range structure of liquid palladium and  rhodium at very high temperatures, J. Non-Crys. Solids 250-252,172 (1999)

            Ref. 8.4    A. Filipponi, A Di Cicco, and S. De Panfilis, Structure of Undercooled liquid Pd probed by X-ray Absorption Spectroscopy, Phys. Rev. Lett. 83, 560 (1999)

    Structure factors

    

        

    

    Comparison of experimental structure factors and EAM calculations      

    

        

    

    

Ref. 8.5. Y. Waseda, The Structure of Non-Crystalline Materials (McGraw-Hill, New York, 1980).

 

Ref. 8.6.  M. M. G. Alemany, O. Diéguez, C. Rey, and L. J. Gallego, Molecular-dynamics study of the dynamic properties of fcc

transition and simple metals in the liquid phase using the second-moment approximation to the tight-binding method, Phys. Rev. B 60, 9208 - 9211 (1999)

         

Liquid Dynamics

    Diffusivity based on the Einstein relation

        Ref. 9.1. M.M.G. Alemany, O. Diéguez, C. Rey and L.J. Gallego, Molecular-dynamics study of the dynamic properties of fcc transition and simple metals in the liquid phase using the second-moment approximation to the tight-binding method, Phys. Rev. B 60, 9208 (1999)

        Ref. 9.2  J. Mei and J.W. Davenport, Molecular-dynamics study of self-diffusion in liquid transition metals,  Phys. Rev. B 42 9682 (1990)

    Diffusivity based on the Green-Kubo relation

    

    van Hove self-correlation functions at different temperatures

    Intermediate scattering functions F(q,t)  and dynamic structure factors S(q,w)