Ce (trivalent)

See this site for tetravalent Cerium ( itinerant f electrons)

 

EAM Potential: Ce3.lammps.eam

    Other formats

        imd    dl_poly    xmd    gulp    plot     

    Old versions

        1 

Properties Predicted by EAM

Ref. 2.1     D. C. Koskenmaki and K. A. Gschneidner, Jr., in Handbook on the physics and chemistry of rare earths: Metals, edited by K. A. Gschneidner, Jr. and L. Eyring (North-Holland Physics Publishing, Amsterdam, 1981), Vol. 1, Chap. 4.

Ref. 2.2    C. Kittel, Introduction to Solid State Physics (Wiley, New York, 2004)

Ref. 2.3    C. Stassis, T. Gould, O.D. Mcmasters, K.A. Gschneidner Jr. and R.M. Nicklow, Lattice and spin dynamics of gamma-Ce, Phys. Rev. B 19 5476 (1979

Ref. 2.4    http://www.webelements.com/cerium/physics.html

 

Lattice Dynamics

    Lattice constants as a function of temperature  

    

        

            

   Thermal expansion coefficient based on quasiharmonic approximation

         

    Elastic Constants

    

            

Ref. 4.1     C. Stassis, T. Gould, O.D. Mcmasters, K.A. Gschneidner Jr. and R.M. Nicklow, Lattice and spin dynamics of gamma-Ce, Phys. Rev. B 19 5476 (1979

        

    Phonon Dispersion Curves

      

        

Ref. 5.1     C. Stassis, T. Gould, O.D. Mcmasters, K.A. Gschneidner Jr. and R.M. Nicklow, Lattice and spin dynamics of gamma-Ce, Phys. Rev. B 19 5476 (1979

Crystal Structures

    

            

Generalized Stacking Fault Energy

    Stacking fault along [101] and [121] directions

  

            

    Iridium gamma surface evaluated with the EAM potential 

    

    Comparison of ab initio and EAM calculations of SF energies (F.C.C. Ce, a = 5.161 Å)

    

   

Deformation Path

    The Bain path

 

fcc: c/a = 1.0

  bcc: c/a = 0.707

    Engergy contours along the Bain deformation path (EAM calculations, Trivalent Ce )

   

        

    Comparison of ab intio and EAM calculations along the Bain path

    

        

Surface Relaxation 

Liquid Structure

    Liquid density: EAM vs. experiment

         

Ref: 8.1     C.L. Yaws, Liquid Density of the Elements, Chemical Engineering (2007) 114, pp 44-46

Ref: 8.2     http://en.wikipedia.org/wiki/Cerium ( 6.55 g/cm^3 near the melting point). 

Ref: 8.3     http://www.knowledgedoor.com/2/elements_handbook/density.html (6.680 g/ml)

Ref. 8.4     T. Ishikawa, J.T. Okada, J.Li, P. Paradis and Y. Watanabe, Thermophysical Properties of Liquid and Supercooled Rare Earth Elements Measured by an Electrostatic Levitator, JAXA Research and Development Report (2009). (6.409 g/cm3  at temperature range 1040K - 1190 K). J. Li, T. Ishikawa J. T. Okada, et al., Noncontact thermophysical property measurement of liquid cerium by electrostatic levitation, J. Mater. Res., 24 (2009) 2449. 

Ref. 8.5    W.G. Rohr, The liquid densitities of Cerium and neodymium metals, J. Less-Comm. Metals, 10 (1966) 389.  ρ = [6.930 − (2.27 × 10−4)(°K)] ± 0.027 g/cm

    

    Pair correlation functions

    

        

    

    Structure factors

    

      

    

    Comparison of experimental structure factors and EAM calculations   

        

   

    Note:  A gaussain damping factor,

 (gamma = 0.310), was applied to calculate the structure factors of Ce. 

Ref. 8.3. Y. Waseda, The Structure of Non-Crystalline Materials (McGraw-Hill, New York, 1980).

 

Ref. 8.4. R. Bellissent and G. Tourand, Neutron Diffraction Study of the Structure of Liquid Cerium and Praseodymium, J. Phys. France 36, 97 (1975)

        

Liquid Dynamics

    Diffusivity based on the Einstein relation

            

 Ref. 9.1. A.V. Gorshkov, Correlations of the self-diffusion coefficients and viscosity of elemental melts with properties of     elements,     Inorganic Materials, 2, 218 (2000) Doi: 10.1007/BF02758020

    Diffusivity based on the Green-Kubo relation

        

    van Hove self-correlation functions at different temperatures

    Intermediate scattering functions F(q,t)  and dynamic structure factors S(q,w)