Pt

EAM Potential: Pt.lammps.eam

    Other formats

        imd    dl_poly    xmd    gulp    plot     xml

    Old versions

        1 

Properties Predicted by EAM

Ref. 2.1     http://www.webelements.com/platinum/crystal_structure.html

Ref. 2.2    C. Kittel, Introduction to Solid State Physics (Wiley, New York, 2004)

Ref. 2.3    G. Simons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties (MIT Press, Cambridge,MA, 1977)

Ref. 2.4    D.H. Dutton, B.N. Brockhouse, and A.P. Miller, Crystal Dynamics of Platinum by Inelastic Neutron Scattering, Can. J. Phys. 50, 2915 (1972)

Ref. 2.5    R.M. Emrick, The formation volume and energy of single vacancies in platinum, J. Phys. F: Met. Phys. 12 1327 (1982)

Ref. 2.6    B.J. Lee, J.H. Shim and M.I. Baskes, Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method, Phys. Rev. B 68, 144112 (2003) 

Ref. 2.7    S. M. Foiles, M. I. Baskes, and M. S. Daw, Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys, Phys. Rev. B33, 7983 (1986)

          Ref. 2.8    http://www.platinummetalsreview.com/jmpgm/     (A.S.Darling. Journal of the Institute of Metals. 1966)

          Ref. 2.9    ab initio calculation (vasp) in the present work.  paw_gga, [Kr]s1d9, encut=278.8 eV. 

          Ref. 2.10    N. M. Rosengaard and H. L. Skriver, Phys. Rev. B 47, 12 865 (1993).

            

Lattice Dynamics

    Lattice constants as a function of temperature  

        

Ref. 3.1   Y.S. Touloukian, R.K. Kirby, R.E. Taylor, P.D. Desai, Thermal Expansion, Metallic Elements and Alloys, Plenum Press, New York,        1975.

            

   Thermal expansion coefficient based on quasiharmonic approximation

         

        

    Elastic Constants

        

Ref. 3.2     G. Simons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties (MIT Press, Cambridge,MA, 1977)

    Pressure-volume equation of state

    

        

        

Ref. 3.4    M. Yokoo, M. Kawai, K.G. Nakamura, K. Kondo, Y. Tange, and T. Tsuchiya, Ultrahigh-pressure scales for gold and platinum at pressures up to 550 GPa, Phys. Rev. B 80, 104114 (2009)

Ref. 3.5    A. Dewaele, P. Loubeyre and M. Mezouar, Equations of state of six metals above 94 GPa, Phys. Rev. B 70, 094112 (2004) 

Ref. 3.6    S. P. Marsh, LASL Shock Hugoniot Data .University of California Press, Berkeley, California, 1980..

Ref. 3.7    N. C. Holmes, J. A. Moriarty, G. R. Gathers, and W. J. Nellis, The equation of state of platinum to 660 GPa (6.6 Mbar), J. Appl. Phys. 66, 2962 (.1989.).

    Phonon Dispersion Curves

    

        

        

Ref. 3.8      PWSCF calculation. Ultrasoft pseudopotential (Pt.pbe-nd-rrkjus.UPF) has been used, with a kinetic energy cutoff ecutwfc = 45.0 Ry. Kpoint selection: 11x11x11. Energy minimization of fcc Pt yields a lattice parameter of a = 3.925 Å corresponding to the lowest binding energy. 

Ref. 3.9     D.H. Dutton, B.N. Brockhouse, and A.P. Miller, Crystal Dynamics of Platinum by Inelastic Neutron Scattering, Can. J. Phys. 50, 2915 (1972)

Crystal Structures

        

        

Generalized Stacking Fault Energy

    Stacking fault along [101] and [121] directions

  

        

    Platinum {111} gamma surface evaluated with the EAM potential

    

  

    Comparison of ab initio and EAM calculations of SF energies (F.C.C. Pt )

 

   

Deformation Path

    The Bain path

 

fcc: c/a = 1.0

  bcc: c/a = 0.707

    Engergy contours along the Bain deformation path (EAM calculations, Platinum )

   

        

    Comparison between ab intio and EAM calculations along the Bain path

    

    

        

Surface Relaxation 

Liquid Structure

    Liquid density: EAM vs. experiment

    

        

Ref: T.Ishikawa, P. Paradis and N. Koike, Non-contact Thermophysical Property Measurements of Liquid and Supercooled Platinum, Jap. J. Appl. Phys. 45, 1719 (2006)

    Pair correlation functions

    

        

        

    

    Structure factors

     

        

   

    Comparison of experimental structure factors and EAM calculations      

    

        

    

    

Ref. 8.2. Y. Waseda, The Structure of Non-Crystalline Materials (McGraw-Hill, New York, 1980).

  

Liquid Dynamics

    Diffusivity based on the Einstein relation

  

    Diffusivity based on the Green-Kubo relation

        

        

    van Hove self-correlation functions at different temperatures

    Intermediate scattering functions F(q,t)  and dynamic structure factors S(q,w)