imd dl_poly xmd gulp plot xml
1
Ref. 2.1 http://www.webelements.com/platinum/crystal_structure.html
Ref. 2.2 C. Kittel, Introduction to Solid State Physics (Wiley, New York, 2004)
Ref. 2.3 G. Simons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties (MIT Press, Cambridge,MA, 1977)
Ref. 2.4 D.H. Dutton, B.N. Brockhouse, and A.P. Miller, Crystal Dynamics of Platinum by Inelastic Neutron Scattering, Can. J. Phys. 50, 2915 (1972)
Ref. 2.5 R.M. Emrick, The formation volume and energy of single vacancies in platinum, J. Phys. F: Met. Phys. 12 1327 (1982)
Ref. 2.6 B.J. Lee, J.H. Shim and M.I. Baskes, Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method, Phys. Rev. B 68, 144112 (2003)
Ref. 2.7 S. M. Foiles, M. I. Baskes, and M. S. Daw, Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys, Phys. Rev. B33, 7983 (1986)
Ref. 2.8 http://www.platinummetalsreview.com/jmpgm/ (A.S.Darling. Journal of the Institute of Metals. 1966)
Ref. 2.9 ab initio calculation (vasp) in the present work. paw_gga, [Kr]s1d9, encut=278.8 eV.
Ref. 2.10 N. M. Rosengaard and H. L. Skriver, Phys. Rev. B 47, 12 865 (1993).
Ref. 3.1 Y.S. Touloukian, R.K. Kirby, R.E. Taylor, P.D. Desai, Thermal Expansion, Metallic Elements and Alloys, Plenum Press, New York, 1975.
Ref. 3.2 G. Simons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties (MIT Press, Cambridge,MA, 1977)
Ref. 3.4 M. Yokoo, M. Kawai, K.G. Nakamura, K. Kondo, Y. Tange, and T. Tsuchiya, Ultrahigh-pressure scales for gold and platinum at pressures up to 550 GPa, Phys. Rev. B 80, 104114 (2009)
Ref. 3.5 A. Dewaele, P. Loubeyre and M. Mezouar, Equations of state of six metals above 94 GPa, Phys. Rev. B 70, 094112 (2004)
Ref. 3.6 S. P. Marsh, LASL Shock Hugoniot Data .University of California Press, Berkeley, California, 1980..
Ref. 3.7 N. C. Holmes, J. A. Moriarty, G. R. Gathers, and W. J. Nellis, The equation of state of platinum to 660 GPa (6.6 Mbar), J. Appl. Phys. 66, 2962 (.1989.).
Ref. 3.8 PWSCF calculation. Ultrasoft pseudopotential (Pt.pbe-nd-rrkjus.UPF) has been used, with a kinetic energy cutoff ecutwfc = 45.0 Ry. Kpoint selection: 11x11x11. Energy minimization of fcc Pt yields a lattice parameter of a = 3.925 Å corresponding to the lowest binding energy.
Ref. 3.9 D.H. Dutton, B.N. Brockhouse, and A.P. Miller, Crystal Dynamics of Platinum by Inelastic Neutron Scattering, Can. J. Phys. 50, 2915 (1972)
fcc: c/a = 1.0
bcc: c/a = 0.707
Ref: T.Ishikawa, P. Paradis and N. Koike, Non-contact Thermophysical Property Measurements of Liquid and Supercooled Platinum, Jap. J. Appl. Phys. 45, 1719 (2006)
Ref. 8.2. Y. Waseda, The Structure of Non-Crystalline Materials (McGraw-Hill, New York, 1980).