Cu

EAM Potential: Cu.lammps.eam

    Other formats

       imd    dl_poly    xmd   gulp    plot  xml    

    Old versions

        1, 2

Properties Predicted by EAM

          Ref. 2.1    http://www.webelements.com/copper

Ref. 2.2     Y. Mishin, M. J. Mehl, D. A. Papaconstantopoulos, A. F. Voter and J. D. Kress, Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations, Phys. Rev. B 63, 224106 (2001) 

Ref. 2.3    G. Simons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties (MIT Press, Cambridge, MA, 1977)Ref. 2.2     B.J. Lee, J.H. Shim and M.I. Baskes, Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method, Phys. Rev. B 68, 144112 (2003)

Ref. 2.4    http://www.webelements.com/copper/physics.html

Ref. 2.5    G. Nilsson and S. Rolandson, "Lattice Dynamics of Copper at 80 K", Phys. Rev. B 7, 2393 (1973).

Ref. 2.6    MD simulation of two-phase equilibrium. 

   

Lattice Dynamics

    Lattice constant as a function of temperature

    

        

Ref. 3.1. Y.S. Touloukian, R.K. Kirby, R.E. Taylor, P.D. Desai, Thermal Expansion, Metallic Elements and Alloys, Plenum Press, New York,        1975.

Ref. 3.2.  F.R. Kroeger, J. Appl. Phys. 48, 853 (1977)

            

    Thermal expansion coefficient based on quasiharmonic approximation

            

    Elastic Constants

    Phonon Dispersion Curves

            [a]. PWSCF calculation. Ultrasoft pseudopotential Cu.pz-d-rrkjus.UPF has been used, with a kinetic energy cutoff 

                    ecutwfc = 25.0 Ry. Kpoint selection: 11x11x11.

            [b]. G. Nilsson and S. Rolandson, "Lattice Dynamics of Copper at 80 K", Phys. Rev. B 7, 2393 (1973).

    

Crystal Structures

        

    

Generalized Stacking Fault Energy

    Stacking fault along [101] and [121] directions

             

    Copper gamma surface evaluated with the EAM potential

        

    Comparison of ab initio and EAM calculations of SF energies

    

Deformation Path

    The Bain path

 

fcc: c/a = 1.0

  bcc: c/a = 0.707

    Engergy contours along the Bain path (EAM calculations)

        

     

    Comparison of ab intio and EAM calculations along the Bain path

        

Surface Relaxation 

Liquid Structure

    Liquid density: EAM vs. experiment

        

    Ref. 8.1. J. Brillo and I. Egry, Density Determination of Liquid Copper, Nickel, and Their Alloys, Int. J. Thermo. 24, 1155 (2003)

    Pair correlation functions

        

    Structure factors

        

    

    Comparison of experimental structure factors and EAM calculations      

    

        

Ref. 8.2. Y. Waseda, The Structure of Non-Crystalline Materials (McGraw-Hill, New York, 1980).

 

Ref. 8.3.  M. M. G. Alemany, O. Diéguez, C. Rey, and L. J. Gallego, Molecular-dynamics study of the dynamic properties of fcc

transition and simple metals in the liquid phase using the second-moment approximation to the tight-binding method, Phys. Rev. B 60, 9208 - 9211 (1999)

Liquid Dynamics

    Diffusivity based on the Einstein-Stokes relation

    Diffusivity based on the Green-Kubo relation

        

 Ref. 9.1. A.V. Gorshkov, Correlations of the self-diffusion coefficients and viscosity of elemental melts with properties of     elements, Inorganic Materials, 2, 218 (2000) Doi: 10.1007/BF02758020

    van Hove self-correlation functions at different temperatures

    Intermediate scattering functions and dynamic structure factors