2023
#133 (2023-1)
講演者(所属): 大城 泰平(東京大学大学院情報理工学系研究科)
題目:微分代数方程式に対する組合せ的前処理法
日時:2023年4月25日(火)16:30-18:00
場所:東京大学大学院数理科学研究科 002室 (アクセス)
概要: 微分代数方程式(DAE)とは,常微分方程式と代数方程式の要素を併せ持つ方程式である.DAEの数値解析にあたっては,矛盾のない初期値を定めることが難しいという問題や,微分指数とよばれる特性量が高い場合に数値的な求解が難しくなるという問題など,特有の困難が生じる.多くのDAEソルバでは組合せ最適化技法に基づいた前処理法が実装されており,矛盾のない初期値設定や微分指数の低いDAEへの変形に利用することができる.しかしながら,組合せ的前処理法はシステムヤコビアンとよばれる行列が非正則なDAEに対しては失敗してしまう.本公演では,DAEに対する組合せ的前処理法を概観したのち,非正則なシステムヤコビアンをもつDAEを正則なDAEに変形する「組合せ緩和法」を紹介する.
備考:
#134 (2023-2)
講演者(所属): 清水 雄貴(東京大学大学院数理科学研究科)
題目:基本解近似解法によるPlateau問題の数値解析
日時:2023年5月16日(火)16:30-18:00
場所:東京大学大学院数理科学研究科 002室及びオンライン (アクセス)
概要: 針金の形状を変えずとも,異なる形状の石鹸膜が張られることがある.それでは,針金の形状から,それが張る石鹸膜の形状には何種類あるか特定できないだろうか.Jordan閉曲線がどのような形状であれ,それを境界とする極小曲面は少なくとも一つは存在する.一方,境界の全曲率が4π以下であるなど,形状に関する十分条件が満たされる場合には,解の一意性が従う.解が複数ある場合には,安定な極小曲面やgenericには解は有限個であるが,そうでない場合には解の有限性自体が難問であり,具体的な個数が得られているのは,現状では特定の境界に関する場合のみに限られている.このように,境界形状と解の個数の関係性は極小曲面の幾何解析学において困難だが重要な問題の一つとして位置づけられている.こうした状況を鑑み,数値計算によりその関係性を見出すことが期待される.極小曲面を何らかの汎函数の最適化問題の停留点として数値的に求めることを想定すると,与えられたJordan閉曲線を境界にもつ,全ての極小曲面を計算するには,(1)最適化問題の初期値に応じて,異なる極小曲面に収束し,(2)無作為かつ多数の初期値に対する収束極限が得られるほど高速で,(3)それらを区別できるほど高精度な,数値解法が必要となる.本講演では,基本解近似解法を用いることで上記三点を達成する数値解法を提案し,その収束誤差解析を行う.また,いくつかの数値例を通じて,境界形状と個数の関係性について論じる.本研究は榊原航也氏(金沢大学)との共同研究に基づく.
参考文献:K. Sakakibara and Y. Shimizu, Numerical analysis for the Plateau problem by the method of fundamental solutions, preprint (arXiv:2212.06508)
備考:
#135 (2023-3)
講演者(所属): 今泉 允聡(東京大学大学院総合文化研究科)
題目:深層学習と過剰パラメータの理論
日時:2023年5月23日(火)16:30-18:00
場所:東京大学大学院数理科学研究科 002室及びオンライン (アクセス)
概要: 深層学習の統計・学習理論的な解析に関する研究トピックを紹介する。深層学習とは多層ニューラルネットワークをモデルとして用いた統計手法であり、このモデルは深層構造(モデルが多数の写像の合成で構成されること)や大自由度(モデルの学習できるパラメータが非常に多いこと)という特徴を持っている。データの不確実性が深層学習に与える影響を評価するには、これらの特徴を適切に扱うことが重要である。本講演では、(i)深層構造を持つモデルの優位性および劣位性とそれを改善する学習手法、(ii)深層モデルの不確実性を損失曲面の形状を用いて評価する理論、および(iii)大自由度モデルの漸近的な解析(過剰パラメータの理論)を深層構造に拡張する試みを紹介する。
備考:
#136 (2023-4)
講演者(所属): 畔上秀幸(名古屋産業科学研究所)
題目:形状最適化問題の正則性と数値解の関連について
日時:2023年6月6日(火)16:30-18:00
場所:東京大学大学院数理科学研究科 002室及びオンライン(アクセス)
概要: 偏微分方程式が定義された領域を設計対象にした最適化問題を形状最適化問題とよぶことにする.この問題に対する解の存在を保証するためには偏微分方程式の解に正則性が必要となる.一方,関数空間上の勾配法や Newton 法に従って有限要素法で数値解を求めると理論的な制限を超えて良好な解が得られるときと異常をきたす場合がある.いくつかの数値例を紹介し,理論の役割について皆さんと一緒に考えてみたい.
備考:
#137 (2023-5)
講演者(所属):山田俊皓(一橋大学大学院経済学研究科)
題目:ディープラーニングと確率論的方法を用いた高次元偏微分方程式の数値計算法について
日時:2023年6月27日(火)16:30-18:00
場所:東京大学大学院数理科学研究科 002室及びオンライン (アクセス)
概要: 近年、ディープラーニングは高次元の偏微分方程式を「次元の呪い」の影響を受けずに数値的に解く技術としても著しく発展している。本講演では、ディープラーニングと確率論的な方法、特に確率微分方程式の数値解法を融合させた収束の速い高次元偏微分方程式の数値計算法について紹介する。講演では、偏微分方程式の数値計算においてディープラーニングが確率論的方法とどのように結び付くか解説し、様々な偏微分方程式に対する数値計算例をアルゴリズムとともに紹介する予定である。また、理論・応用面において現在のところどこまで分かっていてどのような課題があるかについて触れ、今後の展望について述べたい。
備考:
#138 (2023-6)
講演者(所属):奥村真善美(甲南大学知能情報学部)
題目:空間2次元における動的境界条件下のCahn-Hilliard方程式に対する構造保存スキームについて
日時:2023年10月17日(火)16:30-18:00
場所:東京大学大学院数理科学研究科 002室及びオンライン (アクセス)
概要: 偏微分方程式の初期値境界値問題において, 動的境界条件を課した問題が幅広く研究されている. この境界条件は, 領域内部と境界の相互作用を表現するために導入された条件であり, 条件内に未知関数の時間微分を含む. それゆえ, 代表的な境界条件と異なり, 動境界条件は, 領域内部の力学系と同時に境界上でも同種, あるいは異種の力学系を考察することができ, その境界値問題は領域内部の方程式と境界上の方程式の連立系と見なすこともできる. 近年, 相分離現象を記述するCahn-Hilliard方程式に対し, 境界上でもCahn-Hilliard方程式を考察する動的境界条件を課したモデルがGoldstein-Miranville-Schimperna (GMS)やLiu-Wu (LW)によって提唱された. 両者は化学ポテンシャルの外向き単位法線方向微分の扱いが異なっており, GMSモデルでは領域内部と境界の質量和が保存するという保存則, LWモデルでは内部と境界それぞれで質量が保存するという保存則が成り立つ. さらにはいずれのモデルにおいても領域内部と境界のエネルギーの総和が減衰するという総エネルギー散逸則が成り立つことにも注意したい. これらの性質は数値計算においても重要な意味を持ち, その構造をスキームが離散的に再現することで, 安定な計算が可能になるなどの様々な恩恵がある. 本研究では, 先行研究を踏まえ, これらの性質を離散的に再現する構造保存スキームを構成した. 本講演では, それらの構造保存スキームを紹介するとともに, GMSモデル対する構造保存スキームに焦点を当て, その可解性について得られた結果を報告する. また, 両モデルの保存則の違いに起因する, 数値解の挙動の違いも興味深く, その数値計算例も紹介する.
本研究は深尾武史氏(龍谷大学)との共同研究に基づく.
備考:
#139 (2023-7)
講演者(所属):田中一成(早稲田大学国際理工学センター)
題目:ニューラルネットワークによる微分方程式解の包含と優解劣解法の再考
日時:2023年10月24日(火)16:30-18:00
場所:東京大学大学院数理科学研究科 002室及びオンライン (アクセス)
概要: 講演の前半では、微分方程式の解をニューラルネットワークを用いて厳密に包含する手法を紹介する。この手法は、特定のコスト関数で方程式の優解劣解を学習し、その結果として得られるニューラルネットワークで表現された関数の組が真の解を包み込むことを事後的に確認するものである。
手法の紹介は常微分方程式の初期値問題や境界値問題を例に展開するが、楕円型・放物型偏微分方程式に対しても適用可能であることを示す。
前半の内容は矢田部浩平氏(東京農工大学)との共同研究に基づくものである。
講演の後半では楕円型境界値問題に対する優解劣解法そのものに焦点を当てる。伝統的な優解劣解の定義では、暗に関数の滑らかさが要求されるため、優解劣解を区分線形関数を用いることができなかった。この課題を克服するためには、優解劣解が満たすべき条件を緩めることが必要である。そこで、変分不等式と限定されたテスト関数を使用して優解劣解を再定義し、単純な線形補間を用いて真解を包含する優解劣解が構築可能であることを示す。これはReLUのような必ずしも滑らかでない活性化関数を用いる場合でも、前半で紹介した手法が有効であることを示唆する。
後半の内容は松江要氏(九州大学)ならびに落合啓之氏(九州大学)との共同研究に基づく。
備考:
#140 (2023-8)
講演者(所属):古川賢(理化学研究所)
題目:いくつかの力学系とそのデータ同化による予測について
日時:2023年11月14日(火)16:30-18:00
場所:東京大学大学院数理科学研究科 002室及びオンライン (アクセス)
概要: データ同化による力学系の予測について得られた2つの結果を紹介する.前半では,2次元3種のオートマトンのカオス的な離散力学系を導入し,その離散力学系の時間発展を粒子フィルターによるデータ同化によって予測する方法とその結果について紹介する.後半では,プリミティブ方程式のナッジングによるデータ同化にまつわる問題について紹介する.特に,データ自身の持つ情報量とデータ同化によって得られる近似解(予測)のもつ情報量の関係性を正則性の観点から特徴づける.
備考: