Craters on the Moon

MS-ESS1-3. Analyze and interpret data to determine scale properties of objects in the solar system.MS-ESS1-4. Construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth’s 4.6-billion-year-old history.

Learning Targets

Success Criteria

Questions to Ponder

Reading

Shaping the Planets: Impact Cratering

Impact cratering is the excavation of a planet's surface when it is struck by a meteoroid. Impacts are instantaneous events. They leave very characteristic features.

What are craters?

Craters are roughly circular, excavated holes made by impact events. The circular shape is due to material flying out in all directions as a result of the explosion upon impact, not a result of the impactor having a circular shape (almost no impactors are spherical). Craters are the most common surface features on many solid planets and moons—Mercury and our Moon are covered with craters.

This portion of the Moon is covered by numerous circular holes. These are impact craters, each of which was formed when an asteroid or comet collided with the Moon's surface. The large number of craters in this region indicates that this part of the Moon is quite ancient. Geologic processes have not erased the craters with time. 

Apollo 16 photograph courtesy of NASA.

What happens when an impactor hits?

When an impactor strikes the solid surface of a planet, a shock wave spreads out from the site of the impact. The shock wave fractures the rock and excavates a large cavity (much larger than the impactor). The impact sprays material — ejecta — out in all directions. The impactor is shattered into small pieces and may melt or vaporize. Sometimes the force of the impact is great enough to melt some of the local rock. If an impactor is large enough, some of the material pushed toward the edges of the crater will slump back toward the center and the rock beneath the crater will rebound, or push back up, creating a central peak in the crater. The edges of these larger craters also may slump, creating terraces that step down into the crater.

What are the major parts of a crater?

What are the different kinds of craters?

Simple craters are small bowl-shaped, smooth-walled craters (the maximum size limit depends on the planet).

Image from the Mars Global Surveyor, courtesy of the Lunar and Planetary Institute.

Complex craters are large craters with complicated features. Larger craters can have terraces, central peaks, and multiple rings.

Apollo 17 image courtesy of NASA.
Image from the Viking Orbiter, courtesy of the Lunar and Planetary Institute.

Impact basins are very large impact structures that are more than 300 kilometers (185 miles) in diameter. The largest impact basin on the Moon is 2500 kilometers (1550 miles) in diameter and more than 12 kilometers (7 miles) deep. Large impact basins are also found on other planets, including Mars and Mercury.

Galileo Image (PIA00405), produced by the United States Geological Survey, courtesy of NASA.

Scientists describe other types of craters as well:

How are large craters different than small ones?

Small craters often are simple bowl-shaped depressions. The structure of large craters is more complex because they collapse, forming terraces, central peaks, central pits, or multiple rings. Very large impact craters greater than 300 kilometers (185 miles) across are called impact basins.

What influences the size and shape of a crater?

The size and shape of the crater and the amount of material excavated depends on factors such as the velocity and mass of the impacting body and the geology of the surface. The faster the incoming impactor, the larger the crater. Typically, materials from space hit Earth at about 20 kilometers (slightly more than 12 miles) per second. Such a high-speed impact produces a crater that is approximately 20 times larger in diameter than the impacting object. Smaller planets have less gravitational "pull" than large planets; impactors will strike at lower speeds. The greater the mass of the impactor, the greater the size of crater.

Craters most often are circular. More elongate craters can be produced if an impactor strikes the surface at a very low angle — less than 20 degrees.

How can craters be used to determine the age of a planet or moon?

Scientists record the size and number of impact craters — and how eroded they are — to determine the ages and histories of different planetary surfaces. Early in the formation of our solar system (before 3.9 billion years ago) there was lots of large debris striking the surfaces of the young planets and moons; these older impact basins are larger than the more recent craters. As a rule of thumb, older surfaces have been exposed to impacting bodies (meteoroids, asteroids, and comets) for a longer period of time than younger surfaces. Therefore, older surfaces have more impact craters. Mercury and the Moon are covered with impact craters; their surfaces are very old. Venus has fewer craters; its surface has been covered recently (in the last 500 million years!) by lava flows that obscured the older craters.

After Reading

Use the Learning Targets and Success Criteria to answer the questions from the beginning of the reading...

Group Presentation

Back to Astronomy