Concepts

Key concepts

A number of key concepts underpin the Digital Technologies curriculum. These establish a way of thinking about problems, opportunities and information systems and provide a framework for knowledge and practice. The key concepts are:

  • abstraction, which underpins all content, particularly the content descriptions relating to the concepts of data representation, and specification, algorithms and implementation
  • data collection (properties, sources and collection of data), data representation (symbolism and separation) and data interpretation (patterns and contexts)
  • specification (descriptions and techniques), algorithms (following and describing) and implementation (translating and programming)
  • digital systems (hardware, software, and networks and the internet)
  • Interactions (people and digital systems, data and processes) and impacts (sustainability and empowerment).


Abstraction

Abstraction involves hiding details of an idea, problem or solution that are not relevant, to focus on a manageable number of aspects. Abstraction is a natural part of communication: people rarely communicate every detail, because many details are not relevant in a given context. The idea of abstraction can be acquired from an early age. For example, when students are asked how to make toast for breakfast, they do not mention all steps explicitly, assuming that the listener is an intelligent implementer of the abstract instructions.

Central to managing the complexity of information systems is the ability to ‘temporarily ignore’ the internal details of the subcomponents of larger specifications, algorithms, systems or interactions. In digital systems, everything must be broken down into simple instructions.



Data

Data collection describes the numerical, categorical and textual facts measured, collected or calculated as the basis for creating information and its binary representation in digital systems. Data collection is addressed in the processes and production skills strand.

Data representation describes how data are represented and structured symbolically for storage and communication, by people and in digital systems, and is addressed in the knowledge and understanding strand.

Data interpretation describes the processes of extracting meaning from data and is addressed in the processes and production strand.


Specification, Algorithm & Implementation

Specification describes the process of defining and communicating a problem precisely and clearly. For example, explaining the need to direct a robot to move in a particular way. An algorithm is a precise description of the steps and decisions needed to solve a problem. Algorithms will need to be tested before the final solution can be implemented. Anyone who has followed or given instructions, or navigated using directions, has used an algorithm. These generic skills can be developed without programming. For example, students can follow the steps within a recipe or describe directions to locate items. Implementation describes the automation of an algorithm, typically by using appropriate software or writing a computer program. These concepts are addressed in the processes and production skills strand.

See also: Algorithm


Digital systems

The digital systems concept focuses on the components of digital systems: hardware and software (computer architecture and the operating system), and networks and the internet (wireless, mobile and wired networks and protocols). This concept is addressed in both strands. The broader definition of an information system that includes data, people, processes and digital systems falls under the interactions and impacts concept below.


Interactions & Impacts

Interactions refers to all human interactions with information systems, especially user interfaces and experiences, and human–human interactions including communication and collaboration facilitated by digital systems. This concept also addresses methods for protecting stored and communicated data and information.

Impacts describes analysing and predicting the extent to which personal, economic, environmental and social needs are met through existing and emerging digital technologies; and appreciating the transformative potential of digital technologies in people’s lives. It also involves consideration of the relationship between information systems and society and in particular the ethical and legal obligations of individuals and organisations regarding ownership and privacy of data and information.


Unpacking the curriculum: Ten key concepts (Digital Technologies Hub)

Unpacking the curriculum: Ten Key concepts (Australian Computing Academy)