La tabla periódica de los elementos es una disposición de los elementos químicos en forma de tabla, ordenados por su número atómico (número de protones), por su configuración de electrones y sus propiedades químicas. Este ordenamiento muestra tendencias periódicas como elementos con comportamiento similar en la misma columna.
En palabras de Theodor Benfey, la tabla y la ley periódica «son el corazón de la química —comparables a la teoría de la evolución en biología (que sucedió al concepto de la scala naturae), y a los principios de termodinámica en la física clásica—».
Las filas de la tabla se denominan períodos y las columnas grupos. Algunos grupos tienen nombres, así por ejemplo el grupo 17 es el de los halógenos y el grupo 18 el de los gases nobles. La tabla también se divide en cuatro bloques con algunas propiedades químicas similares. Debido a que las posiciones están ordenadas, se puede utilizar la tabla para obtener relaciones entre las propiedades de los elementos, o pronosticar propiedades de elementos nuevos todavía no descubiertos o sintetizados. La tabla periódica proporciona un marco útil para analizar el comportamiento químico y es ampliamente utilizada en química y otras ciencias.
Dmitri Mendeléyev publicó en 1869 la primera versión de tabla periódica que fue ampliamente reconocida, la desarrolló para ilustrar tendencias periódicas en las propiedades de los elementos entonces conocidos, al ordenar los elementos basándose en sus propiedades químicas, si bien Julius Lothar Meyer, trabajando por separado, llevó a cabo un ordenamiento a partir de las propiedades físicas de los átomos. Mendeléyev también pronosticó algunas propiedades de elementos entonces desconocidos que anticipó que ocuparían los lugares vacíos en su tabla. Posteriormente se demostró que la mayoría de sus predicciones eran correctas cuando se descubrieron los elementos en cuestión.
La tabla periódica de Mendeléyev ha sido desde entonces ampliada y mejorada con el descubrimiento o síntesis de elementos nuevos y el desarrollo de modelos teóricos nuevos para explicar el comportamiento químico. La estructura actual fue diseñada por Alfred Werner a partir de la versión de Mendeléyev. Existen además otros arreglos periódicos de acuerdo a diferentes propiedades y según el uso que se le quiera dar (en didáctica, geología, etc.). Para celebrar el 150 aniversario de su creación, la UNESCO declaró 2019 como el Año Internacional de la Tabla Periódica de los Elementos Químicos.
Se han descubierto o sintetizado todos los elementos de número atómico del 1 (hidrógeno) al 118 (oganesón); la IUPAC confirmó los elementos 113, 115, 117 y 118 el 30 de diciembre de 2015, y sus nombres y símbolos oficiales se hicieron públicos el 28 de noviembre de 2016. Los primeros 94 existen naturalmente, aunque algunos solo se han encontrado en cantidades pequeñas y fueron sintetizados en laboratorio antes de ser encontrados en la naturaleza. Los elementos con números atómicos del 95 al 118 solo han sido sintetizados en laboratorios. Allí también se produjeron numerosos radioisótopos sintéticos de elementos presentes en la naturaleza. Los elementos del 95 a 100 existieron en la naturaleza en tiempos pasados, pero actualmente no. La investigación para encontrar por síntesis nuevos elementos de números atómicos más altos continúa.
La historia de la tabla periódica está muy relacionada con varios aspectos del desarrollo de la química y física:
El descubrimiento de los elementos de la tabla periódica.
El estudio de las propiedades comunes y la clasificación de los elementos.
La noción de masa atómica (inicialmente denominada «peso atómico») y, posteriormente, ya en el siglo xx d. C., número másico.
Las relaciones entre la masa atómica (y, más adelante, el número atómico) y las propiedades periódicas de los elementos y la aparición de nuevos elementos.
Artículo principal: Descubrimiento de los elementos químicos
Aunque algunos elementos como el oro (Au), plata (Ag), cobre (Cu), plomo (Pb) y mercurio (Hg) ya eran conocidos desde la antigüedad, el primer descubrimiento científico de un elemento ocurrió en el siglo xvii d. C., cuando el alquimista Hennig Brand descubrió el fósforo (P). En el siglo xviii d. C. se conocieron numerosos nuevos elementos, los más importantes de los cuales fueron los gases, con el desarrollo de la química neumática: oxígeno (O), hidrógeno (H) y nitrógeno (N). También se consolidó en esos años la nueva concepción de elemento, que condujo a Antoine Lavoisier a escribir su famosa lista de sustancias simples, donde aparecían 33 elementos. A principios del siglo xix d. C., la aplicación de la pila eléctrica al estudio de fenómenos químicos condujo al descubrimiento de nuevos elementos, como los metales alcalinos y alcalino-térreos, sobre todo gracias a los trabajos de Humphry Davy. En 1830 ya se conocían 55 elementos. Posteriormente, a mediados del siglo xix d. C., con la invención del espectroscopio, se descubrieron nuevos elementos, muchos de ellos nombrados por el color de sus líneas espectrales características: cesio (Cs, del latín caesĭus, azul), talio (Tl, de tallo, por su color verde), rubidio (Rb, rojo), etc. Durante el siglo xx d. C., la investigación en los procesos radioactivos llevó al descubrimiento en cascada de una serie de elementos pesados (casi siempre sustancias artificiales sintetizadas en laboratorio, con periodos de vida estable muy cortos), hasta alcanzar la cifra de 118 elementos con denominación oficialmente aceptados por la IUPAC en noviembre de 2016.
Lógicamente, un requisito previo necesario a la construcción de la tabla periódica era el descubrimiento de un número suficiente de elementos individuales, que hiciera posible encontrar alguna pauta en comportamiento químico y sus propiedades. Durante los siguientes dos siglos se fue adquiriendo un mayor conocimiento sobre estas propiedades, así como descubriendo muchos elementos nuevos.
La palabra «elemento» procede de la ciencia griega, pero su noción moderna apareció a lo largo del siglo xvii d. C., aunque no existe un consenso claro respecto al proceso que condujo a su consolidación y uso generalizado. Algunos autores citan como precedente la frase de Robert Boyle en su famosa obra El químico escéptico, donde denomina elementos «ciertos cuerpos primitivos y simples que no están formados por otros cuerpos, ni unos de otros, y que son los ingredientes de que se componen inmediatamente y en que se resuelven en último término todos los cuerpos perfectamente mixtos». En realidad, esa frase aparece en el contexto de la crítica de Robert Boyle a los cuatro elementos aristotélicos.
A lo largo del siglo xviii d. C., las tablas de afinidad recogieron un nuevo modo de entender la composición química, que aparece claramente expuesto por Lavoisier en su obra Tratado elemental de química. Todo ello condujo a diferenciar en primer lugar qué sustancias de las conocidas hasta ese momento eran elementos químicos, cuáles eran sus propiedades y cómo aislarlas.
El descubrimiento de gran cantidad de elementos nuevos, así como el estudio de sus propiedades, pusieron de manifiesto algunas semejanzas entre ellos, lo que aumentó el interés de los químicos por buscar algún tipo de clasificación.
A principios del siglo xix d. C., John Dalton (1766-1844) desarrolló una concepción nueva del atomismo, a la que llegó gracias a sus estudios meteorológicos y de los gases de la atmósfera. Su principal aportación consistió en la formulación de un «atomismo químico» que permitía integrar la nueva definición de elemento realizada por Antoine Lavoisier (1743-1794) y las leyes ponderales de la química (proporciones definidas, proporciones múltiples, proporciones recíprocas).
Dalton empleó los conocimientos sobre proporciones en las que reaccionaban las sustancias de su época y realizó algunas suposiciones sobre el modo como se combinaban los átomos de las mismas. Estableció como unidad de referencia la masa de un átomo de hidrógeno (aunque se sugirieron otros en esos años) y refirió el resto de los valores a esta unidad, por lo que pudo construir un sistema de masas atómicas relativas. Por ejemplo, en el caso del oxígeno, Dalton partió de la suposición de que el agua era un compuesto binario, formado por un átomo de hidrógeno y otro de oxígeno. No tenía ningún modo de comprobar este punto, por lo que tuvo que aceptar esta posibilidad como una hipótesis a priori.
Dalton sabía que una parte de hidrógeno se combinaba con siete partes (ocho, afirmaríamos en la actualidad) de oxígeno para producir agua. Por lo tanto, si la combinación se producía átomo a átomo, es decir, un átomo de hidrógeno se combinaba con un átomo de oxígeno, la relación entre las masas de estos átomos debía ser 1:7 (o 1:8 se calcularía en la actualidad). El resultado fue la primera tabla de masas atómicas relativas (o pesos atómicos, como los llamaba Dalton), que fue modificada y desarrollada en años posteriores. Las inexactitudes antes mencionadas dieron lugar a toda una serie de polémicas y disparidades respecto a las fórmulas y los pesos atómicos, que solo comenzarían a superarse, aunque no totalmente, en el congreso de Karlsruhe en 1860.
En 1789 Antoine Lavoisier publicó una lista de 33 elementos químicos, agrupándolos en gases, metales, no metales y tierras. Aunque muy práctica y todavía funcional en la tabla periódica moderna, fue rechazada debido a que había muchas diferencias tanto en las propiedades físicas como en las químicas.
Los químicos pasaron el siglo siguiente buscando un esquema de clasificación más preciso. Uno de los primeros intentos para agrupar los elementos de propiedades análogas y relacionarlos con los pesos atómicos se debe al químico alemán Johann Wolfgang Döbereiner (1780-1849) quien en 1817 puso de manifiesto el notable parecido que existía entre las propiedades de ciertos grupos de tres elementos, con una variación gradual del primero al último. Posteriormente (1827) señaló la existencia de otros grupos en los que se daba la misma relación —cloro, bromo y yodo; azufre, selenio y telurio; litio, sodio y potasio—.
A estos grupos de tres elementos se los denominó tríadas. Al clasificarlas, Döbereiner explicaba que el peso atómico promedio de los pesos de los elementos extremos, es parecido al del elemento en medio. Esto se conoció como la ley de Tríadas. Por ejemplo, para la tríada cloro-bromo-yodo, los pesos atómicos son respectivamente 36, 80 y 127; el promedio es 81, que es aproximadamente 80; el elemento con el peso atómico aproximado a 80 es el bromo, lo cual hace que concuerde con el aparente ordenamiento de tríadas.
El químico alemán Leopold Gmelin trabajó con este sistema, y en 1843 había identificado diez tríadas, tres grupos de cuatro, y un grupo de cinco. Jean-Baptiste Dumas publicó el trabajo en 1857 que describe las relaciones entre los diversos grupos de metales. Aunque los diversos químicos fueron capaces de identificar las relaciones entre pequeños grupos de elementos, aún tenían que construir un esquema que los abarcara a todos.
En 1857 el químico alemán August Kekulé observó que el carbono está a menudo unido a otros cuatro átomos. El metano, por ejemplo, tiene un átomo de carbono y cuatro átomos de hidrógeno. Este concepto finalmente se conocería como «valencia».
En 1862 de Chancourtois, geólogo francés, publicó una primera forma de tabla periódica que llamó la «hélice telúrica» o «tornillo». Fue la primera persona en notar la periodicidad de los elementos. Al disponerlos en espiral sobre un cilindro por orden creciente de peso atómico, de Chancourtois mostró que los elementos con propiedades similares parecían ocurrir a intervalos regulares. Su tabla incluye además algunos iones y compuestos. También utiliza términos geológicos en lugar de químicos y no incluye un diagrama; como resultado, recibió poca atención hasta el trabajo de Dmitri Mendeléyev.
En 1864 Julius Lothar Meyer, un químico alemán, publicó una tabla con 44 elementos dispuestos por valencia. La misma mostró que los elementos con propiedades similares a menudo compartían la misma valencia. Al mismo tiempo, William Odling —un químico inglés— publicó un arreglo de 57 elementos ordenados en función de sus pesos atómicos. Con algunas irregularidades y vacíos, se dio cuenta de lo que parecía ser una periodicidad de pesos atómicos entre los elementos y que esto estaba de acuerdo con «las agrupaciones que generalmente recibían». Odling alude a la idea de una ley periódica, pero no siguió la misma. En 1870 propuso una clasificación basada en la valencia de los elementos.
El químico inglés John Newlands produjo una serie de documentos de 1863 a 1866 y señaló que cuando los elementos se enumeran en orden de aumentar el peso atómico, las propiedades físicas y químicas similares se repiten a intervalos de ocho.
Comparó esta periodicidad con las octavas de la música. Esta llamada «ley de las octavas» fue ridiculizada por los contemporáneos de Newlands y la Chemical Society se negó a publicar su obra, porque dejaba de cumplirse a partir del calcio. Newlands fue, sin embargo, capaz de elaborar una tabla de los elementos y la utilizó para predecir la existencia de elementos faltantes, como el germanio. La Chemical Society solamente reconoció la importancia de sus descubrimientos cinco años después de que se le acreditaran a Mendeléyev, y posteriormente fue reconocido por la Royal Society, que le concedió a Newlands su más alta condecoración, la medalla Davy.
En 1867 Gustavus Hinrichs, un químico danés, publicó un sistema periódico en espiral sobre la base de los espectros, los pesos atómicos y otras similitudes químicas. Su trabajo fue considerado como demasiado complicado y por eso no fue aceptado.
Tabla de Mendeléyev publicada en 1872. En ella deja casillas libres para los elementos por descubrir.
En 1869, el profesor de química ruso Dmitri Ivánovich Mendeléyev publicó su primera Tabla Periódica en Alemania. Un año después Julius Lothar Meyer publicó una versión ampliada de la tabla que había creado en 1864, basadas en la periodicidad de los volúmenes atómicos en función de la masa atómica de los elementos.
Por esta fecha ya eran conocidos 63 elementos de los 92 que existen de forma natural entre el Hidrógeno y el Uranio. Ambos químicos colocaron los elementos por orden creciente de sus masas atómicas, los agruparon en filas o periodos de distinta longitud y situaron en el mismo grupo elementos que tenían propiedades químicas similares, como la valencia. Construyeron sus tablas haciendo una lista de los elementos en filas o columnas en función de su peso atómico y comenzando una nueva fila o columna cuando las características de los elementos comenzaron a repetirse.
El reconocimiento y la aceptación otorgada a la tabla de Mendeléyev vino a partir de dos decisiones que tomó. La primera fue dejar huecos cuando parecía que el elemento correspondiente todavía no había sido descubierto. No fue el primero en hacerlo, pero sí en ser reconocido en el uso de las tendencias en su tabla periódica para predecir las propiedades de esos elementos faltantes. Incluso pronosticó las propiedades de algunos de ellos: el galio (Ga), al que llamó eka-aluminio por estar situado debajo del aluminio; el germanio (Ge), al que llamó eka-silicio; el escandio (Sc); y el tecnecio (Tc), que, aislado químicamente a partir de restos de un sincrotrón en 1937, se convirtió en el primer elemento producido de forma predominantemente artificial.
La segunda decisión fue ignorar el orden sugerido por los pesos atómicos y cambiar los elementos adyacentes, tales como telurio y yodo, para clasificarlos mejor en familias químicas. En 1913, Henry Moseley determinó los valores experimentales de la carga nuclear o número atómico de cada elemento, y demostró que el orden de Mendeléyev corresponde efectivamente al que se obtiene de aumentar el número atómico.
El significado de estos números en la organización de la tabla periódica no fue apreciado hasta que se entendió la existencia y las propiedades de los protones y los neutrones. Las tablas periódicas de Mendeléyev utilizan el peso atómico en lugar del número atómico para organizar los elementos, información determinable con precisión en ese tiempo. El peso atómico funcionó bastante bien para la mayoría de los casos permitiendo predecir las propiedades de los elementos que faltan con mayor precisión que cualquier otro método conocido entonces. Moseley predijo que los únicos elementos que faltaban entre aluminio (Z = 13) y oro (Z = 79) eran Z = 43, 61, 72 y 75, que fueron descubiertos más tarde. La secuencia de números atómicos todavía se utiliza hoy en día incluso, aunque se han descubierto y sintetizado nuevos elementos.
Tabla periódica de Mendeléyev de 1871 con 8 grupos de elementos. Los guiones representan elementos desconocidos en esa fecha.
En 1871, Mendeléyev publicó su tabla periódica en una nueva forma, con grupos de elementos similares dispuestos en columnas en lugar de filas, numeradas I a VIII en correlación con el estado de oxidación del elemento. También hizo predicciones detalladas de las propiedades de los elementos que ya había señalado que faltaban, pero deberían existir. Estas lagunas se llenaron posteriormente cuando los químicos descubrieron elementos naturales adicionales.
En su nueva tabla consigna el criterio de ordenación de las columnas, las cuales se basan en los hidruros y óxidos que puede formar esos elementos y por tanto, implícitamente, las valencias de esos elementos. Aún seguía dando resultados contradictorios (Plata y Oro aparecen duplicados, y no hay separación entre berilio y magnesio con boro y aluminio), pero significó un gran avance. Esta tabla fue completada con un grupo más, constituido por los gases nobles descubiertos en vida de Mendeléyev, pero que, por sus características, no tenían cabida en la tabla, por lo que hubo de esperar casi treinta años, hasta 1904, con el grupo o valencia cero, quedando la tabla más completa.
A menudo se afirma que el último elemento natural en ser descubierto fue el francio —designado por Mendeléyev como eka-cesio— en 1939. Sin embargo, el plutonio, producido sintéticamente en 1940, fue identificado en cantidades ínfimas como un elemento primordial de origen natural en 1971.
La disposición de la tabla periódica estándar es atribuible a Horace Groves Deming, un químico americano que en 1923 publicó una tabla periódica de 18 columnas. En 1928 Merck and Company preparó un folleto con esta tabla, que fue ampliamente difundida en las escuelas estadounidenses. Por la década de 1930 estaba apareciendo en manuales y enciclopedias de química. También se distribuyó durante muchos años por la empresa Sargent-Welch Scientific Company.
La tabla periódica de Mendeléyev presentaba ciertas irregularidades y problemas. En las décadas posteriores tuvo que integrar los descubrimientos de los gases nobles, las «tierras raras» y los elementos radioactivos. Otro problema adicional eran las irregularidades que existían para compaginar el criterio de ordenación por peso atómico creciente y la agrupación por familias con propiedades químicas comunes. Ejemplos de esta dificultad se encuentran en las parejas telurio-yodo, argón-potasio y cobalto-níquel, en las que se hace necesario alterar el criterio de pesos atómicos crecientes en favor de la agrupación en familias con propiedades químicas semejantes.
Durante algún tiempo, esta cuestión no pudo resolverse satisfactoriamente hasta que Henry Moseley (1867-1919) realizó un estudio sobre los espectros de rayos X en 1913. Moseley comprobó que al representar la raíz cuadrada de la frecuencia de la radiación en función del número de orden en el sistema periódico se obtenía una recta, lo cual permitía pensar que este orden no era casual, sino reflejo de alguna propiedad de la estructura atómica. Hoy sabemos que esa propiedad es el número atómico (Z) o número de cargas positivas del núcleo.
La explicación que se acepta actualmente de la ley periódica surgió tras los desarrollos teóricos producidos en el primer tercio del siglo XX, cuando se construyó la teoría de la mecánica cuántica. Gracias a estas investigaciones y a desarrollos posteriores, se acepta que la ordenación de los elementos en el sistema periódico está relacionada con la estructura electrónica de los átomos de los diversos elementos, a partir de la cual se pueden predecir sus diferentes propiedades químicas.
En 1945 Glenn Seaborg, un científico estadounidense, sugirió que los actínidos, como los lantánidos, estaban llenando un subnivel f en vez de una cuarta fila en el bloque d, como se pensaba hasta el momento. Los colegas de Seaborg le aconsejaron no publicar una teoría tan radical, ya que lo más probable era arruinar su carrera. Como consideraba que entonces no tenía una carrera que pudiera caer en descrédito, la publicó de todos modos. Posteriormente se encontró que estaba en lo cierto y en 1951 ganó el Premio Nobel de Química por su trabajo en la síntesis de los actínidos.
En 1952, el científico costarricense Gil Chaverri presentó una nueva versión basada en la estructura electrónica de los elementos, la cual permite ubicar las series de lantánidos y actínidos en una secuencia lógica de acuerdo con su número atómico.
Aunque se producen de forma natural pequeñas cantidades de algunos elementos transuránicos, todos ellos fueron descubiertos por primera vez en laboratorios, el primero de los cuales fue el neptunio, sintetizado en 1939. La producción de estos elementos ha expandido significativamente la tabla periódica. Debido a que muchos son altamente inestables y decaen rápidamente, son difíciles de detectar y caracterizar cuando se producen. Han existido controversias relativas a la aceptación de las pretensiones y derechos de descubrimiento de algunos elementos, lo que requiere una revisión independiente para determinar cuál de las partes tiene prioridad, y por lo tanto los derechos del nombre. Flerovio (elemento 114) y livermorio (elemento 116) fueron nombrados el 31 de mayo de 2012. En 2010, una colaboración conjunta entre Rusia y Estados Unidos en Dubná, región de Moscú, Rusia, afirmó haber sintetizado seis átomos de teneso (elemento 117).
El 30 de diciembre de 2015 la IUPAC reconoció oficialmente los elementos 113, 115, 117, y 118, completando la séptima fila de la tabla periódica. El 28 de noviembre de 2016 se anunciaron los nombres oficiales y los símbolos de los últimos cuatro nuevos elementos aprobados hasta la fecha por la IUPAC (Nh, nihonio; Mc, moscovio; Ts, teneso; y Og, oganesón), que sustituyen a las designaciones temporales.
La tabla periódica actual es un sistema donde se clasifican los elementos conocidos hasta la fecha. Se colocan De izquierda a derecha y de arriba abajo en orden creciente de sus números atómicos. Los elementos están ordenados en siete hileras horizontales llamadas periodos, y en 18 columnas verticales llamadas grupos o familias.
Hacia abajo y a la izquierda aumenta el radio atómico y el radio iónico.
Hacia arriba y a la derecha aumenta la energía de ionización, la afinidad electrónica y la electronegatividad.
Ejemplo de tabla periódica (en lengua vietnamita), en la que figuran los tres sistemas de numeración de los grupos.
A las columnas verticales de la tabla se las conoce como grupos o familias. Hay 18 grupos en la tabla periódica estándar. En virtud de un convenio internacional de denominación, los grupos están numerados de 1 a 18 desde la columna más a la izquierda —los metales alcalinos— hasta la columna más a la derecha —los gases nobles—.
Anteriormente se utilizaban números romanos según la última cifra del convenio de denominación de hoy en día —por ejemplo, los elementos del grupo 4 estaban en el IVB y los del grupo 14 en el IVA—. En Estados Unidos, los números romanos fueron seguidos por una letra «A» si el grupo estaba en el bloque s o p, o una «B» si pertenecía al d. En Europa, se utilizaban letras en forma similar, excepto que «A» se usaba si era un grupo precedente al 10, y «B» para el 10 o posteriores. Además, solía tratarse a los grupos 8, 9 y 10 como un único grupo triple, conocido colectivamente en ambas notaciones como grupo VIII. En 1988 se puso en uso el nuevo sistema de nomenclatura IUPAC y se desecharon los nombres de grupo previos.
Algunos de estos grupos tienen nombres triviales —no sistemáticos—, como se ve en la tabla de abajo, aunque no siempre se utilizan. Los grupos del 3 al 10 no tienen nombres comunes y se denominan simplemente mediante sus números de grupo o por el nombre de su primer miembro —por ejemplo, «el grupo de escandio» para el 3—, ya que presentan un menor número de similitudes y/o tendencias verticales.
La explicación moderna del ordenamiento en la tabla periódica es que los elementos de un grupo poseen configuraciones electrónicas similares y la misma valencia, entendida como el número de electrones en la última capa. Dado que las propiedades químicas dependen profundamente de las interacciones de los electrones que están ubicados en los niveles más externos, los elementos de un mismo grupo tienen propiedades químicas similares y muestran una tendencia clara en sus propiedades al aumentar el número atómico.
Grupo 1 (I A): metales alcalinos
Grupo 2 (II A): metales alcalinotérreos
Grupo 3 (III B): familia del escandio (tierras raras y actínidos)
Grupo 14 (IV A): carbonoideos
Grupo 15 (V A): nitrogenoideos
Grupo 18 (VIII A): gases nobles
Por ejemplo, los elementos en el grupo 1 tienen una configuración electrónica ns1 y una valencia de 1 —un electrón externo— y todos tienden a perder ese electrón al enlazarse como iones positivos de +1. Los elementos en el último grupo de la derecha son los gases nobles, los cuales tienen lleno su último nivel de energía —regla del octeto— y, por ello, son excepcionalmente no reactivos y son también llamados «gases inertes».
Los elementos de un mismo grupo tienden a mostrar patrones en el radio atómico, energía de ionización y electronegatividad. De arriba abajo en un grupo, aumentan los radios atómicos de los elementos. Puesto que hay niveles de energía más llenos, los electrones de valencia se encuentran más alejados del núcleo. Desde la parte superior, cada elemento sucesivo tiene una energía de ionización más baja, ya que es más fácil quitar un electrón en los átomos que están menos fuertemente unidos. Del mismo modo, un grupo tiene una disminución de electronegatividad desde la parte superior a la inferior debido a una distancia cada vez mayor entre los electrones de valencia y el núcleo.
Hay excepciones a estas tendencias, como por ejemplo lo que ocurre en el grupo 11, donde la electronegatividad aumenta más abajo en el grupo. Además, en algunas partes de la tabla periódica como los bloques d y f, las similitudes horizontales pueden ser tan o más pronunciadas que las verticales.
Las filas horizontales de la tabla periódica son llamadas períodos. El número de niveles energéticos de un átomo determina el periodo al que pertenece. Cada nivel está dividido en distintos subniveles, que conforme aumenta su número atómico se van llenando en este orden:
Siguiendo esa norma, cada elemento se coloca según su configuración electrónica y da forma a la tabla periódica.
Los elementos en el mismo período muestran tendencias similares en radio atómico, energía de ionización, afinidad electrónica y electronegatividad. En un período el radio atómico normalmente decrece si nos desplazamos hacia la derecha debido a que cada elemento sucesivo añadió protones y electrones, lo que provoca que este último sea arrastrado más cerca del núcleo. Esta disminución del radio atómico también causa que la energía de ionización y la electronegatividad aumenten de izquierda a derecha en un período, debido a la atracción que ejerce el núcleo sobre los electrones. La afinidad electrónica también muestra una leve tendencia a lo largo de un período. Los metales —a la izquierda— generalmente tienen una afinidad menor que los no metales —a la derecha del período—, excepto para los gases nobles.
La tabla periódica consta de 7 períodos:
La tabla periódica se puede también dividir en bloques de acuerdo a la secuencia en la que se llenan las capas de electrones de los elementos. Cada bloque se denomina según el orbital en el que en teoría reside el último electrón: s, p, d y f. El bloque s comprende los dos primeros grupos (metales alcalinos y alcalinotérreos), así como el hidrógeno y el helio. El bloque p comprende los últimos seis grupos —que son grupos del 13 al 18 en la IUPAC (3A a 8A en América)— y contiene, entre otros elementos, todos los metaloides. El bloque d comprende los grupos 3 a 12 —o 3B a 2B en la numeración americana de grupo— y contiene todos los metales de transición. El bloque f, a menudo colocado por debajo del resto de la tabla periódica, no tiene números de grupo y se compone de lantánidos y actínidos. Podría haber más elementos que llenarían otros orbitales, pero no se han sintetizado o descubierto; en este caso se continúa con el orden alfabético para nombrarlos. Así surge el bloque g, que es un bloque hipotético.
De acuerdo con las propiedades físicas y químicas que comparten, los elementos se pueden clasificar en tres grandes categorías: metales, metaloides y no metales. Los metales son sólidos generalmente brillantes, altamente conductores que forman aleaciones de unos con otros y compuestos iónicos similares a sales con compuestos no metálicos —siempre que no sean los gases nobles—. La mayoría de los no metales son gases incoloros o de colores; pueden formar enlaces covalentes con otros elementos no metálicos. Entre metales y no metales están los metaloides, que tienen propiedades intermedias o mixtas.
Metales y no metales pueden clasificarse en sub_categorías que muestran una gradación desde lo metálico a las propiedades no metálicas, de izquierda a derecha, en las filas: metales alcalinos —altamente reactivos—, metales alcalinotérreos —menos reactivos—, lantánidos y actínidos, metales de transición y metales post-transición. Los no metales se subdividen simplemente en no metales poliatómicos —que, por estar más cercanos a los metaloides, muestran cierto carácter metálico incipiente—, no metales diatómicos —que son esencialmente no metálicos— y los gases nobles, que son monoatómicos no metálicos y casi completamente inertes. Ocasionalmente también se señalan subgrupos dentro de los metales de transición, tales como metales refractarios y metales nobles.
La colocación de los elementos en categorías y subcategorías en función de las propiedades compartidas es imperfecta. Hay un espectro de propiedades dentro de cada categoría y no es difícil encontrar coincidencias en los límites, como es el caso con la mayoría de los sistemas de clasificación. El berilio, por ejemplo, se clasifica como un metal alcalinotérreo, aunque su composición química anfótera y su tendencia a formar compuestos covalentes son dos atributos de un metal de transición químicamente débil o posterior. El radón se clasifica como un no metal y un gas noble, aunque tiene algunas características químicas catiónicas más características de un metal. También es posible clasificar con base en la división de los elementos en categorías de sucesos, mineralógicos o estructuras cristalinas. La categorización de los elementos de esta forma se remonta a por lo menos 1869, cuando Hinrichs escribió que se pueden extraer líneas sencillas de límites para mostrar los elementos que tienen propiedades similares, tales como metales y no metales, o los elementos gaseosos.
Hay tres variantes principales de la tabla periódica, cada una diferente en cuanto a la constitución del grupo 3. Escandio e itrio se muestran de manera uniforme, ya que son los dos primeros miembros de este grupo; las diferencias dependen de la identidad de los miembros restantes.
El grupo 3 está formado por Sc, Y, y La, Ac. Lantano (La) y actinio (Ac) ocupan los dos puestos por debajo del itrio (Y). Esta variante es la más común. Hace hincapié en las similitudes de las tendencias periódicas bajando los grupos 1, 2 y 3, a expensas de las discontinuidades en las tendencias periódicas entre los grupos 3 y 4 y la fragmentación de los lantánidos y actínidos.
El grupo 3 está formado por Sc, Y, y Lu, Lr. Lutecio (Lu) y lawrencio (Lr) ocupan los dos puestos por debajo del itrio. Esta variante conserva un bloque f de 14 columnas de ancho, a la vez que desfragmenta a lantánidos y actínidos. Enfatiza las similitudes de tendencias periódicas entre el grupo 3 y los siguientes grupos a expensas de discontinuidades en las tendencias periódicas entre los grupos 2 y 3.
El grupo 3 está formado por Sc, Y, y 15 lantánidos y 15 actínidos. Las dos posiciones por debajo de itrio contienen los lantánidos y los actínidos (posiblemente por notas al pie). Esta variante enfatiza las similitudes en la química de los 15 elementos lantánidos (La-Lu), a expensas de la ambigüedad en cuanto a los elementos que ocupan las dos posiciones por debajo de itrio del grupo 3, y aparentemente de un bloque f amplio de 15 columnas —solo puede haber 14 elementos en cualquier fila del bloque f—.
Las tres variantes se originan de las dificultades históricas en la colocación de los lantánidos de la tabla periódica, y los argumentos en cuanto a dónde empiezan y terminan los elementos del bloque f. Se ha afirmado que tales argumentos son la prueba de que «es un error de romper el sistema [periódico] en bloques fuertemente delimitados». Del mismo modo, algunas versiones de la tabla dos marcadores han sido criticados por lo que implica que los 15 lantánidos ocupan la caja única o lugar por debajo de itrio, en violación del principio básico de «un lugar, un elemento».
Forma larga de la tabla periódica, como resultado de la asignación de los lantánidos y actínidos al grupo 3, bajo Sc e Y.
Alternativas de tablas periódicas
La tabla periódica moderna a veces se expande a su forma larga o de 32 columnas restableciendo los elementos del bloque f a su posición natural entre los bloques s y d. A diferencia de la forma de 18 columnas, esta disposición da como resultado «el aumento sin interrupciones a la secuencia de los números atómicos». También se hace más fácil ver la relación del bloque f con los otros bloques de la tabla periódica. Jensen aboga por una forma de tabla con 32 columnas con base en que los lantánidos y actínidos son relegados en la mente de los estudiantes como elementos opacos y poco importantes que pueden ser puestos en cuarentena e ignorados. A pesar de estas ventajas, los editores generalmente evitan la formulación de 32 columnas porque su relación rectangular no se adapta adecuadamente a la proporción de una página de libro.
La tabla periódica en el formato de 32 columnas.
Los científicos discuten la eficiencia de cada modelo de tabla periódica. Muchos cuestionan incluso que la distribución bidimensional sea la mejor. Argumentan que se basa en una convención y en conveniencia, principalmente por la necesidad de ajustarlas a la página de un libro y otras presentaciones en el plano. El propio Mendeléyev no estaba conforme y consideró la distribución en espiral, sin suerte. Algunos argumentos en favor de nuevos modelos consisten en, por ejemplo, la ubicación del grupo de los lantánidos y de los actínidos fuera del cuerpo de la tabla, e incluso que el helio debería estar ubicado en el grupo 2 de los alcaniotérreos, pues comparte con ellos dos electrones en su capa externa. Por ello con los años se han desarrollado otras tablas periódicas ordenadas en forma distinta, como por ejemplo en triángulo, pirámide, tablas en escalones, torre y en espiral.9 A este último tipo corresponde la galaxia química, la espiral de Theodor Benfey y la forma en espiral-fractal de Melinda E Green. Se estima que se han publicado más de 700 versiones de la tabla periódica.
Según Phillip Stewart, si Mendeléyev hubiera seguido desarrollando el modelo en espiral, hubiera podido predecir las propiedades de los halógenos. Utilizando esta idea, el propio Stewart creó una tabla periódica en espiral a la que dio en llamar «Galaxia química», en la que acomoda la longitud creciente de los períodos en los brazos de una galaxia en espiral.
En palabras de Theodor Benfey, la tabla y la ley periódica
son el corazón de la química —comparables a lo que la teoría de la evolución en biología (que sucedió al concepto de la scala naturae) y los principios de termodinámica en la física clásica. Sin embargo, la tabla periódica estándar como se muestra en los salones de clase y se utiliza en los libros de texto siempre me pareció completamente insatisfactoria. Con sus lagunas de mamut en el primer y segundo períodos y las colecciones no unidas de lantánidos y actínidos flotantes por debajo de la tabla, la última impresión que un estudiante tendría sería el sentido de la periodicidad de un elemento.
Theodor Benfey
Tabla en espiral de Benfey.
Su preocupación, pues, era estrictamente pedagógica. Por ese motivo diseñó una tabla periódica oval similar a un campo de fútbol que no mostraba saltos ni elementos flotantes. Ordena los elementos en una espiral continua, con el hidrógeno en el centro y los metales de transición, los lantánidos y los actínidos ocupando las penínsulas. No obstante, no se sintió satisfecho con el resultado, ya que no tenía espacio suficiente para los lantánidos. Por ello en un rediseño posterior creó una protrusión para hacerles sitio y lo publicó en 1964 en la revista de la que era redactor jefe, Chemistry (química), de la American Chemical Society. La tabla fue modificada para dejar abierta la posibilidad de acomodar nuevos elementos transuránicos que todavía no se habían detectado, cuya existencia había sido sugerida por Glenn Seaborg, así como otros cambios menores. La espiral de Benfey fue publicada en calendarios, libros de texto y utilizada por la industria química, por lo cual se volvió popular.
La tabla fractal se basa en la continuidad de las características del elemento al final de una fila con el que se encuentra al inicio de la siguiente, lo que sugiere que la distribución podría representarse mejor con un cilindro en lugar de fraccionar la tabla en columnas. Además, en algunos casos había muchas diferencias entre algunos elementos con números atómicos bajos. Por otra parte, la tabla incorpora la familia de los actínidos y los lantánidos al diseño general, ubicándolos en el lugar que les correspondería por número atómico, en lugar de mantenerlos separados en dos grupos flotantes al final como sucede en la tabla estándar. El resultado es que las familias, en lugar de seguir columnas, siguen arcos radiales. Esta tabla evidencia la periodicidad introduciendo horquillas en el inicio de los períodos de longitud 8, 18 y 32.
La mayoría de las tablas periódicas son de dos dimensiones; sin embargo, se conocen tablas en tres dimensiones al menos desde 1862 (pre-data tabla bidimensional de Mendeléyev de 1869). Como ejemplos más recientes se puede citar la Clasificación Periódica de Courtines (1925), el Sistema de Lámina de Wrigley (1949), la hélice periódica de Giguère (1965) y el árbol periódico de Dufour (1996). Se ha descrito que la Tabla Periódica de Stowe (1989) tiene cuatro dimensiones —tres espaciales y una de color—.
Las diversas formas de tablas periódicas pueden ser consideradas como un continuo en la química-física. Hacia el final del continuo químico se puede encontrar, por ejemplo, la Tabla Periódica Inorgánica de Rayner-Canham (2002), que hace hincapié en las tendencias, patrones, relaciones y propiedades químicas inusuales. Cerca del final del continuo físico está la tabla periódica ampliada escalonada por la izquierda de Janet (1928). Tiene una estructura que muestra una relación más estrecha con el orden de llenado de electrones por capa y, por asociación, la mecánica cuántica. En algún lugar en medio del continuo se ubica la tabla periódica estándar; se considera que expresa las mejores tendencias empíricas en el estado físico, la conductividad eléctrica y térmica, los números de oxidación, y otras propiedades fácilmente inferidas de las técnicas tradicionales del laboratorio químico.
Los elementos 108 (hasio), 112 (copernicio) y 114 (flerovio) no tienen propiedades químicas conocidas. Otros elementos superpesados pueden comportarse de forma diferente a lo que se predice por extrapolación, debido a los efectos relativistas; por ejemplo, se predijo que el flerovio exhibiría posiblemente algunas propiedades similares a las de los gases nobles, aunque actualmente (2016) se coloca en el grupo del carbono. Sin embargo, experimentos posteriores sugieren que se comporta químicamente como plomo, como se espera a partir de su posición de la tabla periódica.
Tabla periódica de los elementos ampliada
No está claro si los nuevos elementos encontrados continuarán el patrón de la tabla periódica estándar como parte del período 8 o se necesitará nuevos ajustes o adaptaciones. Seaborg espera que este periodo siga el patrón previamente establecido exactamente, de modo que incluiría un bloque s para los elementos 119 y 120, un nuevo bloque g para los próximos 18 elementos, y 30 elementos adicionales continuarían los bloques actuales f, d, y p. Físicos tales como Pekka Pyykkö han teorizado que estos elementos adicionales no seguirían la regla de Madelung, que predice cómo se llenan las capas de electrones, situación que por lo tanto afectaría a la apariencia de la tabla periódica estándar.
El número de posibles elementos no se conoce. En 1911 Elliot Adams, con base en la disposición de los elementos en cada fila de la tabla periódica horizontal, predijo que no existirían los elementos de peso atómico superior a 256 —lo que estaría entre los elementos 99 y 100 en términos de hoy en día—. La estimación reciente más alta es que la tabla periódica puede terminar poco después de la isla de estabilidad, que según se considere un modelo relativista o no se centrará alrededor de Z = 120 y N = 172 o Z = 124-126 y N = 184, ya que la extensión de la tabla periódica está restringida por las líneas de goteo de protones y de neutrones. Otras predicciones del fin de la tabla periódica incluyen al elemento 128 de John Emsley, al elemento 137 de Richard Feynman, y al elemento 155 de Albert Khazan.
Modelo de Bohr
El modelo de Bohr, no relativista, exhibe dificultad para los átomos con número atómico superior a 137, ya que estos requerirían que los electrones 1s viajen más rápido que c, la velocidad de la luz, lo que lo vuelve inexacto y no se puede aplicar a estos elementos.
Ecuación relativista de Dirac
La ecuación relativista de Dirac tiene problemas para elementos con más de 137 protones. Para ellos, la función de onda del estado fundamental de Dirac es oscilatoria, y no hay diferencia entre los espectros de energía positivo y negativo, como en la paradoja de Klein. Si se realizan cálculos más precisos, teniendo en cuenta los efectos del tamaño finito del núcleo, se encuentra que la energía de enlace excede el límite para los elementos con más de 173 protones. Para los elementos más pesados, si el orbital más interno (1s) no está lleno, el campo eléctrico del núcleo tira de un electrón del vacío, lo que resulta en la emisión espontánea de un positrón; sin embargo, esto no sucede si el orbital más interno está lleno, de modo que el elemento 173 no es necesariamente el final de la tabla periódica.
Solamente siguiendo las configuraciones electrónicas, el hidrógeno (configuración electrónica 1s1) y el helio (1s2) se colocan en los grupos 1 y 2, por encima de litio ([He]2s1) y berilio ([He]2s2). Sin embargo, esta colocación se utiliza rara vez fuera del contexto de las configuraciones electrónicas: cuando los gases nobles —entonces llamados «gases inertes»— fueron descubiertos por primera vez alrededor de 1900, se los identificaba como «el grupo 0», lo que reflejaba que no se les conocía ninguna reactividad química en ese momento, y el helio se colocó en la parte superior de ese grupo, porque compartía esta situación extrema. Aunque el grupo cambió su número formal, muchos autores siguieron colocando al helio directamente por encima del neón, en el grupo 18; uno de los ejemplos de tal colocación es la tabla IUPAC actual. Las propiedades químicas del hidrógeno no son muy cercanas a los de los metales alcalinos, que ocupan el grupo 1, y por eso el hidrógeno a veces se coloca en otra parte: una de las alternativas más comunes es en el grupo 17. Una de las razones para ello es la estrictamente univalente química predominantemente no metálica del hidrógeno, la del flúor —el elemento colocado en la parte superior del grupo 17— es estrictamente univalente y no metálica. A veces, para mostrar cómo el hidrógeno tiene tanto propiedades correspondientes a las de los metales alcalinos y a los halógenos, puede aparecer en dos columnas al mismo tiempo. También puede aparecer por encima del carbono en el grupo 14: así ubicado, se adapta bien al aumento de las tendencias de los valores de potencial de ionización y los valores de afinidad de electrones, y no se aleja demasiado de la tendencia de electronegatividad. Por último, el hidrógeno a veces se coloca por separado de cualquier grupo porque sus propiedades en general difieren de las de cualquier grupo: a diferencia del hidrógeno, los otros elementos del grupo 1 muestran un comportamiento extremadamente metálico; los elementos del grupo 17 comúnmente forman sales —de ahí el vocablo «halógeno»—; los elementos de cualquier otro grupo muestran una química multivalente. El otro elemento del periodo 1, el helio, a veces se coloca separado de cualquier grupo también. La propiedad que distingue al helio del resto de los gases nobles —a pesar de que su extraordinario carácter inerte está muy cerca del neón y el argón— es que, en su capa cerrada de electrones, el helio tiene solo dos electrones en el orbital más externo, mientras que el resto de los gases nobles tienen ocho.
Según IUPAC un metal de transición es «un elemento cuyo átomo tiene una subcapa d incompleta o que puede dar lugar a cationes». De acuerdo con esta definición, todos los elementos en los grupos del 3 al 11 son metales de transición y se excluye al grupo 12, que comprende zinc, cadmio y mercurio.
Algunos químicos consideran que los «elementos del bloque d» y los «metales de transición» son categorías intercambiables, incluyendo por tanto al grupo 12 como un caso especial de metal de transición en el que los electrones d no participan normalmente en el enlace químico. El descubrimiento de que el mercurio puede utilizar sus electrones d en la formación de fluoruro de mercurio (IV) (HgF4) llevó a algunos científicos a sugerir que el mercurio puede ser considerado un metal de transición. Otros, como Jensen, argumentan que la formación de un compuesto como HgF4 puede ocurrir solo bajo condiciones muy anormales. Como tal, el mercurio no puede ser considerado como un metal de transición por ninguna interpretación razonable en el sentido normal del término.
En otros casos hay quienes no incluyen al grupo 3, argumentando que estos no forman iones con una capa d parcialmente ocupada y por lo tanto no presentan las propiedades características de la química de los metales de transición.
Aunque el escandio y el itrio son siempre los dos primeros elementos del grupo 3, la identidad de los próximos dos elementos no se resuelve. O bien son lantano y actinio, o lutecio y lawrencio. Existen argumentos físicos y químicos para apoyar esta última disposición, pero no todos los autores están convencidos.
Tradicionalmente se representa al lantano y al actinio como los restantes miembros del grupo 3. Se ha sugerido que este diseño se originó en la década de 1940, con la aparición de las tablas periódicas que dependen de las configuraciones electrónicas de los elementos y la noción de la diferenciación de electrones.
Las configuraciones de cesio, bario y lantano son [Xe]6s1, [Xe]6s2 y [Xe]5d16s2. Por lo tanto el lantano tiene un electrón diferenciador 5d y esto lo establece «en el grupo 3 como el primer miembro del bloque d para el periodo 6».
En el grupo 3 se ve un conjunto consistente de configuraciones electrónicas: escandio [Ar]3d14s2, itrio [Kr]4d15s2 y lantano. Aún en el período 6, se le asignó al iterbio una configuración electrónica de [Xe]4f135d16s2 y [Xe]4f145d16s2 para el lutecio, lo que resulta «en un electrón diferenciante 4f para el lutecio y lo establece firmemente como el último miembro del bloque f para el período 6.» Matthias describe la colocación del lantano en virtud del itrio como «un error en el sistema periódico —por desgracia propagado mayoritariamente por la compañía Welch [Sargent-Welch]... y ...todo el mundo la copió». Lavelle lo refutó aportando una serie de libros de referencia conocidos en los que se presentaban tablas periódicas con tal disposición.
Las primeras técnicas para separar químicamente escandio, itrio y lutecio se basaron en que estos elementos se produjeron juntos en el llamado «grupo de itrio», mientras que La y Ac se produjeron juntos en el «grupo del cerio». Por consiguiente, en los años 1920 y 30 algunos químicos colocaron el lutecio en el grupo 3 en lugar del lantano.
Posteriores trabajos espectroscópicos encontraron que la configuración electrónica de iterbio era de hecho [Xe]4f146s2. Esto significaba que iterbio y lutecio tenían 14 electrones f, «resultando en un electrón diferenciante d en lugar de f» para el último, lo que lo hacía un «candidato igualmente válido» para la siguiente posición de la tabla periódica en el grupo 3 debajo del itrio. Varios físicos en los años 1950 y 60 optaron por lutecio, a la luz de una comparación de varias de sus propiedades físicas con las del lantano. Esta disposición, en la que el lantano es el primer miembro del bloque f, es cuestionada por algunos autores, ya que este elemento carece de electrones f. Sin embargo, se ha argumentado que esta no es una preocupación válida dado que existen otras anomalías en la tabla periódica, como por ejemplo el torio, que no tiene electrones f, pero forma parte de ese bloque. En cuanto al lawrencio, su configuración electrónica se confirmó en 2015 como [Rn]5f147s27p1, lo que representa otra anomalía de la tabla periódica, independientemente de si se coloca en el bloque d o f, pues la potencialmente aplicable posición de bloque p se ha reservado para el nihonio al que se le prevé una configuración electrónica de [Rn]5f146d107s27p1.
Las muchas formas diferentes de la tabla periódica han llevado a preguntarse si existe una forma óptima o definitiva. Se cree que la respuesta a esta pregunta depende de si la periodicidad química tiene una verdad subyacente, o es en cambio el producto de la interpretación humana subjetiva, dependiente de la circunstancias, las creencias y las predilecciones de los observadores humanos. Se podría establecer una base objetiva para la periodicidad química determinando la ubicación del hidrógeno y el helio, y la composición del grupo 3. En ausencia de una verdad objetiva, las diferentes formas de la tabla periódica pueden ser consideradas variaciones de la periodicidad química, cada una de las cuales explora y hace hincapié en diferentes aspectos, propiedades, perspectivas y relaciones de y entre los elementos. Se cree que la ubicuidad de la tabla periódica estándar es una consecuencia de su diseño, que tiene un equilibrio de características en términos de facilidad de construcción y tamaño, y su descripción de orden atómico y tendencias periódicas.
Estado de los elementos en condiciones normales de presión y temperatura (0 °C y 1 atm).
La tabla periódica de los elementos ampliada fue sugerida por primera vez por Glenn Theodore Seaborg en 1969. Se considera una extensión lógica de los principios que hicieron posible la tabla periódica, de tal forma que sea posible incluir fácilmente los elementos químicos no descubiertos aún, aunque solamente predijo hasta el elemento 168.1 Todos los elementos se denominan según los postulados de la Unión Internacional de Química Pura y Aplicada (la IUPAC, siglas de su nombre en inglés International Union of Pure and Applied Chemistry), que proporciona una denominación sistemática de elementos estándar mientras no se confirme un nombre oficial.
Oganesón ← Ununennio → Unbinilio
Tabla completa • Tabla ampliada
Información genera
Ununennio, Uue, 119
315 (predicción) u
Electrones por nivel
2, 8, 18, 32, 32, 18, 8, 1 (predicción)
Propiedades atómicas
1, 3 (predicción)5
Propiedades físicas
Sólido
Valores en el SI y condiciones normales de presión y temperatura, salvo que se indique lo contrario
El Ununennio, también conocido como elemento 119 o eka-francio, es un elemento químico hipotético de símbolo Uue y número atómico 119. Es uno de los elementos más pesados teóricos de la tabla periódica, y su existencia aún no ha sido confirmada experimentalmente.
Se espera que el ununennio pertenezca a la serie de los superactínidos y tenga propiedades similares a los elementos de esa serie. Debido a su alta masa atómica, también se espera que sea muy inestable y radioactivo, y probablemente solo exista durante una fracción de segundo antes de desintegrarse en elementos más ligeros.
En la tabla periódica de los elementos, se espera que sea un elemento del bloque s, un metal alcalino y el primer elemento del octavo período. Es el elemento más ligero que aún no se ha sintetizado.
Se han realizado varios intentos para sintetizar el Ununennio, principalmente mediante la fusión de núcleos de otros elementos más ligeros. Los primeros intentos se realizaron en la década de 2000 utilizando aceleradores de iones pesados en Rusia y EE. UU., pero no se observaron evidencias de la creación del elemento.
El nombre temporal del ununennio significa uno-uno-nueve. Se intentó sintetizar en 1985 bombardeando un blanco de einstenio-254 con iones de calcio-48 en el acelerador HILAC en Berkeley, California. No se identificó ningún átomo.
Configuración electrónica del posible elemento 119 (Uue).
Es improbable que esta reacción sea útil para producir este elemento, debido a la difícil tarea de producir una cantidad suficiente de Es-254 para construir un blanco suficientemente grande o para aumentar la sensibilidad del experimento hasta el nivel requerido.
En 2001, un equipo de científicos en el Laboratorio Nacional Lawrence Berkeley en California, EE. UU., también sugirió que el elemento 119 podría existir y propuso el nombre "eka-francio" para el elemento. El nombre eka-francio se refiere a la posición del elemento en la tabla periódica, justo debajo del francio (elemento 87).
En 2002, el nombre "ununennio" fue propuesto como un nombre temporal para el elemento por la IUPAC (Unión Internacional de Química Pura y Aplicada) debido a que significa "uno uno nueve" en latín. En 2004, la IUPAC confirmó el nombre ununennio como el nombre oficial temporal del elemento 119.
En 2010, un equipo de científicos del Laboratorio Nacional Lawrence Livermore en California informó haber producido evidencia tentativa de la creación de átomos de Ununennio al bombardear átomos de bismuto con iones de calcio. Sin embargo, este resultado aún no ha sido confirmado por otros laboratorios. En 2018, se intentó sintetizar el elemento en el RIKEN de Japón. El Instituto Central de Investigaciones Nucleares (Rusia) planea realizar un intento en algún momento en el futuro, pero no se ha hecho pública una fecha precisa. Las pruebas teóricas y experimentales han demostrado que la síntesis del ununennio será probablemente mucho más difícil que la de los elementos anteriores.
Se espera que el ununennio sea menos reactivo que el cesio y el francio y más cercano en comportamiento al potasio o al rubidio, y aunque debería mostrar el estado de oxidación +1 característico de los metales alcalinos, también se predice que muestre los estados de oxidación +3 y +5, que son desconocidos en cualquier otro metal alcalino.
Se espera que el ununennio tenga propiedades similares a otros elementos de la serie de los superactínidos, como el nobelio y el lawrencio, debido a su alta masa atómica. Debido a su alta inestabilidad, el ununennio se espera que tenga una corta vida útil y sea altamente radioactivo.
También se espera que tenga una gran energía de enlace debido a su gran número de protones y neutrones, lo que significa que la energía requerida para separar sus núcleos sería muy alta. Además, se espera que sea un sólido metálico a temperatura ambiente y tenga un punto de fusión muy alto.
Ununennio ← unbinilio → Unbiunio
Tabla completa • Tabla ampliada
Información general
unbinilio, Ubn, 120
Desconocida u
Electrones por nivel
2, 8, 18, 32, 32, 18, 8, 2 (predicción)
Propiedades atómicas
2, 4 (predicción)
Propiedades físicas
Desconocido
Valores en el SI y condiciones normales de presión y temperatura, salvo que se indique lo contrario.
El Unbinilio o eka-radio es el nombre temporal de un elemento químico de la tabla periódica aún no descubierto, cuyo símbolo provisional es Ubn y su número atómico 120.6
En marzo-abril de 2007, se intentó la síntesis del elemento 120 en Flerov Laboratory of Nuclear Reactions en Dubna (Rusia) bombardeando un blanco de plutonio-244 con iones de hierro-58.7 Un análisis inicial mostró que no se produjeron átomos del elemento 120 con un límite de 0.7 pb para la sección de cruce a la energía estudiada.
El equipo ruso ha de mejorar sus instalaciones antes de un nuevo intento de producción.
En abril-mayo de 2007, el equipo de GSI intentó crear unbinilio usando la reacción:
No se produjeron átomos del elemento 120 con un límite de 0,3 pb para la sección de cruce a la energía estudiada.
El GSI está actualmente repitiendo el experimento con una mayor sensibilidad. Se planificaron inicialmente dos runs o series de medidas separadas, pero la actual información indica que hubo un único run del 19 de enero al 24 de marzo de 2008. Se probaron otras dos combinaciones proyectil-blanco que conducen al mismo isótopo Ubn-302:
Tras ejecutar el experimento durante 120 días ininterrumpidos, y tras más de 2,6×1019 proyectiles que chocaron contra el blanco, no se encontró ninguna cadena de desintegración del elemento 120.
El elemento 120 es de interés porque es parte de la hipotética isla de estabilidad, siendo el isótopo 318 el más estable de los que pueden crearse con los métodos actuales. Usando el modelo esférico de formación de capas, el elemento 120 sería el más pesado en una isla de estabilidad, y también, junto al 114, el más esférico.12
De los resultados de los experimentos del equipo alemán del GSI se deduce que la supuesta isla de estabilidad para Z=120 y N=184 (120 protones y 184 neutrones) no será excepcionalmente elevada respecto a las regiones vecinas.
El Unbinilio sería muy reactivo, de acuerdo con las propiedades periódicas conocidas, pues este elemento pertenece al grupo de los metales alcalinotérreos. Sería mucho más reactivo que otros elementos más ligeros de su grupo. Reaccionaría violentamente con el aire para formar óxido de unbinilio, y con el agua para formar hidróxido de unbinilio, que sería una base fuerte.
Unbinilio ← Unbiunio → Unbibio
Tabla completa • Tabla ampliada
Información general
Unbiunio, Ubu, 121
desconocida u
1/2 (predicción)
Electrones por nivel
2, 8, 18, 32, 33, 18, 8, 2 (predicción)
Propiedades atómicas
3 (predicción)
El Unbiunio es el nombre provisional de un hipotético elemento químico aún no sintetizado, que significa uno-dos-uno y cuyo símbolo provisional es Ubu, y su número atómico, 121. Correspondería al nuevo grupo de superactínidos.
Sería el primer elemento cuya configuración electrónica en el estado estacionario contiene un electrón en la órbita g, por lo que sería el primer elemento del bloque g.
En la tabla periódica ampliada pertenece a los Transactínidos (en la tabla periódica normal no se muestra).
Número másico: Desconocido
Grupo: 3B
Período: 8
Clasificación: Elemento de Transición
Estado: Presuntamente sólido
Protones: 121
Electrones: 121
Neutrones: Desconocido
Estructura Electrónica: 2-8-18-32-33-18-8-2
El nombre Unbiunio es sistemático, utilizado como un marcador de posición hasta que sea confirmado por otros investigadores y se decida un nombre. Generalmente, el nombre sugerido por el responsable de su descubrimiento es el elegido.
Tabla completa • Tabla ampliada
Información general
Unbibio, Ubb, 122
1/2 (predicción)
Electrones por nivel
2, 8, 18, 32, 34, 18, 8, 2 (predicción)
El unbibio es el nombre provisional de un elemento químico que significa uno-dos-dos y cuyo símbolo provisional es Ubb, y su número atómico, 122. Fue descubierto en la Universidad de Jerusalén.
Es el segundo elemento cuya configuración electrónica en el estado estacionario contiene un electrón en el nivel g, por lo que sería el segundo elemento del bloque g.
En abril de 2008, se anunció que se habían descubierto átomos de este elemento en muestras de torio natural8 pero esta petición ha sido desestimada ante el resultado negativo de experimentos similares repetidos usando técnicas más precisas.
El primer intento de sintetizar el elemento 122 fue realizado por Georgy Flerov et al. en JINR, mediante una reacción de fusión en caliente:
No se detectaron átomos y se midió un campo límite de 5 mb (5,000,000 pb). Los resultados actuales han mostrado que la sensibilidad de este experimento era demasiado baja en al menos 6 órdenes de magnitud.
En 2000, se desarrolló un experimento similar con una sensibilidad mucho mayor en Gesellschaft für Schwerionenforschung
Estos resultados indican que la síntesis de elementos superpesados sigue siendo un reto no alcanzado y se requieren nuevas mejoras en la intensidad del haz y en la eficiencia experimental. La sensibilidad debería aumentar hasta 1 fb.
Varios experimentos se han realizado en el período 2000-2004 en el Laboratorio Flerov de Reacciones Nucleares estudiando la fisión característica de los núcleos compuestos 306122. Se han usado para ello dos reacciones, 248Cm+58Fe y 242Pu+64Ni. Los resultados han mostrado que tales núcleos sufren una fisión en la que se forman, según el modelo de capas nucleares, predominantemente núcleos de 132Sn (Z=50, N=82). Se encontró que el campo para el mecanismo de fusión-fisión era similar para proyectiles de 48Ca y 58Fe, lo que indica un posible futuro uso de núcleos de 58Fe como proyectiles en la formación de elementos superpesados.
La tabla inferior contiene varias combinaciones de blancos y proyectiles que podrían usarse para formar núcleos compuestos de Z=122.
En abril de 2008, un grupo de científicos liderados por Amnon Marinov de la Universidad Hebrea de Jerusalén afirmó haber encontrado átomos simples de unbibio en depósitos naturales de torio con una abundancia de entre 10-11 a 10-12, relativa al torio (de uno a diez átomos de unbibio por cada billón de átomos de torio.8La reivindicación de Marinov et al. fue criticada por una parte de la comunidad científica, y Marinov afirmó que él había enviado el artículo a las revistas Nature y Nature Physics pero ambas lo devolvieron sin enviarlo a sus correctores para ser revisado.
Una crítica de la técnica, previamente empleada en la supuesta identificación de isótopos más ligeros de torio por espectrometría de masas, fue publicada en Physical Review C in 2008. La réplica del grupo de Marinov fue publicada en Physical Review C después del comentario publicado.
Una repetición del experimento del torio usando un método mejorado de espectrometría de masas con aceleradores de partículas (AMS) resultó fallida en la confirmación de los resultados, a pesar de emplear una sensibilidad 100 veces mayor. Este hecho arroja una duda considerable sobre los resultados del grupo de Marinov en relación con sus reivindicaciones sobre los isótopos de vida larga de los elementos torio, roentgenio y unbibio.
Unbibio ← Unbitrio → Unbiquadio
Tabla completa • Tabla ampliada
Información general
Unbitrio, Ubt, 123
1/2 (predicción)
Electrones por nivel
2, 8, 18, 32, 35, 18, 8, 2 (predicción)
Unbitrio es el nombre temporal de un elemento químico hipotético de la tabla periódica que tiene el símbolo temporal Ubt y el número atómico 123. Los cálculos han mostrado que 326Ubt sería el isótopo más estable. Este elemento del 8º período de la tabla periódica pertenecería a la serie de los superactínidos, y formaría parte de los elementos del bloque g.
El nombre unbitrio es un nombre sistemático de elemento, que se emplea como marcador de posición hasta que se confirme su existencia por otro grupo de investigación y la IUPAC decida su nombre definitivo. Habitualmente, se elige el nombre propuesto por el descubridor.
Ningún superactínido ha sido nunca observado, y se ignora si la existencia de un átomo tan pesado es físicamente posible.
El modelo de capas del núcleo atómico prevé la existencia de números mágicos por tipo de nucleones en razón de la estratificación de los neutrones y de los protones en niveles de energía cuánticos en el núcleo según postula este modelo, de modo similar a lo que ocurre con los electrones al nivel del átomo ; uno de estos números mágicos es 126, observado para los neutrones pero no todavía para los protones, mientras que el número mágico siguiente, 184, no ha sido nunca observado : se espera que los nucleídos que tengan alrededor de 126 protones (unbihexio) y de 184 neutrones sean sensiblemente más estables que los nucleídos vecinos, por lo que quizás tengan períodos radiactivos de más de un segundo, lo que constituiría un « islote de estabilidad ».
La dificultad estriba en que, para los átomos superpesados, la determinación de los números mágicos parece más delicado que para los átomos ligeros, de manera que, según los modelos, el número mágico siguiente se debería buscar para valores de Z (número atómico) entre 114 y 126.
El unbitrio forma parte de los elementos que sería posible producir, con las técnicas actuales, en el islote de estabilidad; la estabilidad particular de esos isótopos sería debido a un efecto cuántico de acoplamiento de los mesones ω, uno de los nuevos mesones llamados « sin sabor ».
Unbitrio ← Unbiquadio → Unbipentio
Tabla completa • Tabla ampliada
Información general
Unbiquadio, Ubq, 124
Desconocida u
1/2 (predicción)
Electrones por nivel
2, 8, 18, 32, 36, 18, 8, 2 (predicción)
El unbiquadio es el nombre temporal de un elemento químico hipotético de la tabla periódica que tiene el símbolo temporal Ubq y número atómico Z=124.
En 2008, un equipo en GANIL, Francia, publicó resultados que indicaban que se habían producido núcleos del elemento 124 en un estado energético de muy alta excitación, que sufrieron una posterior fisión con vidas medias medibles. Este importante resultado sugiere un fuerte efecto estabilizador en Z=124 y señala que la siguiente capa de protones comienza para Z>120, no para Z=114 como se pensaba previamente.
En una serie de experimentos, científicos de GANIL han intentado medir la fisión directa y retrasada de núcleos compuestos de los elementos con Z=114, 120, y 124 para demostrar efectos decapa en esta región y localizar la siguiente capa esférica de protones. En 2006, con resultados completos publicados en 2008,el equipo suministró resultados de una reacción que implicaba el bombardeo de un blanco de germanio natural con iones uranio.
El equipo informó que habían sido capaces de identificar núcleos compuestos fisionándose, con vidas medias mayores de 10−18 s. Aunque estos núcleos son muy efímeros, la capacidad de medir tales tiempos de desintegración indican un fuerte efecto de capa en Z=124. Un fenómeno similar fue encontrado en el caso del unbinilio (Z=120) pero no para el flerovio (Z=114).
El nombre provisional, unbiquadio, deriva de su número atómico, Z=124.
Unbiquadio ← Unbipentio → Unbihexio
Tabla completa • Tabla ampliad
Información general
Unbipentio, Ubp, 125
Desconocida u
1/2 (predicción)
Electrones por nivel
2, 8, 18, 32, 37, 18, 8, 2 (predicción)
El unbipentio, o eka-neptunio es el nombre temporal de un elemento químico hipotético de la tabla periódica que tiene el símbolo temporal Ubp y número atómico Z=125. Los cálculos han mostrado que 332Ubp sería el isótopo más estable.
El nombre unbipentio es un nombre sistemático de elemento, que se emplea como marcador de posición hasta que se confirme su existencia por otro grupo de investigación y la IUPAC decida su nombre definitivo. Este es un elemento transuránico (aquellos después del uranio) y son siempre artificialmente producidos. Habitualmente, se elige el nombre propuesto por el descubridor.
El elemento 125 es de interés porque es parte de la hipotética isla de estabilidad.
Unbipentio ← Unbihexio → Unbiseptio
Tabla completa • Tabla ampliada
Información general
Unbihexio, Ubh, 126
Superactinoides, Elementos del periodo 8, g
334 g/mol u
1/2 (predicción)
Electrones por nivel
2, 8, 18, 32, 38, 18, 8, 2 (predicción)
El unbihexio, o eka-plutonio es el nombre temporal de un elemento químico desconocido de la tabla periódica que tiene el símbolo temporal Ubh y número atómico Z=126. Los cálculos muestran que 332Ubp sería el segundo isótopo más estable.
El nombre unbihexio es un nombre sistemático de elemento, que se emplea como marcador de posición hasta que se confirme su existencia por otro grupo de investigación y la IUPAC decida su nombre definitivo. Este no es un elemento transuránico como el átomo 125 unbipentio. Habitualmente, se elige el nombre propuesto por el descubridor.
El elemento 126 es de interés porque es parte de la hipotética isla de estabilidad.
Unbihexio ← Unbiseptio → Unbioctio
Tabla completa • Tabla ampliada
Información general
Unbiseptio, Ubs, 127
n/a, Elementos del periodo 8, g
Desconocida u
1/2 (predicción)
El unbiseptio, o eka-americio es el nombre temporal de un elemento químico desconocido de la tabla periódica que tiene el símbolo temporal Ubs y número atómico Z=127.
El nombre unbiseptio es un nombre sistemático de elemento, que se emplea como marcador de posición hasta que se confirme su existencia por otro grupo de investigación y la IUPAC decida su nombre definitivo. El elemento 127 es de interés porque es parte de la hipotética isla de estabilidad.
Unbiseptio ← Unbioctio → Unbiennio
Tabla completa • Tabla ampliada
Información genera
Unbioctio, Ubo, 128
Desconocida u
1/2 (predicción)
Electrones por nivel
2, 8, 18, 32, 40, 18, 8, 2 (predicción)
Propiedades atómicas
6
Propiedades físicas
Desconocido
Valores en el SI y condiciones normales de presión y temperatura, salvo que se indique lo contrario.
El unbioctio o eka-curio es el nombre temporal de un elemento químico desconocido de la tabla periódica que tiene el símbolo Ubo y Número atómico Z=128. Pertenece a los superactínidos.Este elemento tiene una vida media corta y podría ser radioactivo .
El nombre temporal del unbioctio significa uno-dos-ocho.
Unbioctio ← Unbiennio → Untrinilio
Tabla completa • Tabla ampliada
Información general
Unbiennio, Ube, 129
n/a, 8° periodo, g
342 (predicción) u
1/2 (predicción)
Electrones por nivel
2, 8, 18, 32, 37, 20, 8, 4 (predicción)
El unbiennio o eka-berkelio es el nombre temporal de un elemento químico desconocido de la tabla periódica que tiene el símbolo Ube y Número atómico Z=129. El elemento 129 es de interés científico pero no es parte de la hipotética isla de estabilidad, además pertenece a los superactínidos y es un elemento transuránico. La configuración electrónica predictiva que posee este elemento es: [ Og ] 8s2 8p2 6f3 5g4.5 Su masa atómica predictiva es de 342.
El nombre temporal del unbiennio viene del latín Unbiennium y significa "uno-dos-nueve". Adicionalmente, corresponde a un nombre sistemático de elemento, que se emplea como marcador de posición hasta que se confirme su existencia por un grupo de investigación encargado y la IUPAC decida su nombre definitivo.
Unbiennio ← Untrinilio → Untriunio
Tabla completa • Tabla ampliada
Información general
Untrinilio, Utn, 130
n/a, 8° periodo, g
346 (predicción) u
1/2 (predicción)
Electrones por nivel
2, 8, 18, 32, 42, 18, 8, 2 (predicción)
El untrinilio o eka-californio es el nombre temporal de un elemento químico desconocido de la tabla periódica que tiene el símbolo Utn y Número atómico Z=130. El elemento 130 es de interés científico pero no es parte de la hipotética isla de estabilidad, además pertenece a los superactínidos y es un elemento transuránico. La configuración electrónica predictiva que posee este elemento es: [ Og ] 8s2 8p2 6f3 5g5.5
El nombre temporal del untrinilio viene del latín Untrinilium y significa "uno-tres-cero". Además, corresponde a un nombre sistemático de elemento, que se emplea como marcador de posición hasta que se confirme su existencia por un grupo de investigación encargado y la IUPAC decida su nombre definitivo
Los superactínidos es una serie de elementos químicos no descubiertos desde el número 121 (unbiunio) hasta el 157 (unpentseptio), que se pueden clasificar como los elementos 5g y 6f del período 8, junto con el primer elemento 7d. La existencia teórica de los superactínidos fue sugerida por Glenn T. Seaborg en 1969. Los superactínidos tendrían una vida media extremadamente corta, aunque el unbihexio (elemento 126) estaría dentro de una hipotética isla de estabilidad. La serie no es reconocida por la IUPAC, cuya tabla periódica de referencia termina en el oganesón (elemento 118).
En la serie de superactínidos, las capas 7d3/2, 8p1/2, 6f5/2 y 5g7/2 deberían llenarse todas simultáneamente. Esto crea situaciones muy complicadas, tanto que solo se han realizado cálculos CCSD completos y precisos para los elementos 121 y 122.7 El primer superactínido, unbiunio (elemento 121), debería ser similar al lantano y el actinio: su principal estado de oxidación debería ser +3, aunque la cercanía de los niveles de energía de las subcapas de valencia pueden permitir estados de oxidación más altos, al igual que en los elementos 119 y 120. La estabilización relativista de la subcapa 8p debería dar como resultado una configuración electrónica de valencia de estado fundamental 8s28p1 para el elemento 121, en contraste con las configuraciones ds2 del lantano y el actinio; sin embargo, esta configuración anómala no parece afectar su química calculada, que sigue siendo similar a la del actinio. Se prevé que su primera energía de ionización sea de 429.4 kJ/mol, que sería inferior a la de todos los elementos conocidos excepto los metales alcalinos potasio, rubidio, cesio y francio: este valor es incluso inferior al del alcalino del período 8 ununennio (463.1 kJ/mol). De manera similar, el siguiente superactínido, unbibio (elemento 122), podría ser similar al cerio y al torio, con un estado de oxidación principal de +4, pero tendría una configuración electrónica de valencia de estado fundamental 7d18s28p1 o 8s28p2,10 a diferencia de la configuración 6d27s2 del torio. Por tanto, su primera energía de ionización sería menor que la del torio (Th: 6.3 eV; elemento 122: 5.6 eV) debido a la mayor facilidad para ionizar el electrón 8p1/2 del unbibio que el electrón 6d del torio. El colapso del orbital 5g se retrasa hasta alrededor del elemento 125; se teoriza que las configuraciones electrónicas de la serie isoelectrónica de 119 electrones sean [Og] 8s1 para los elementos 119 a 122, [Og] 6f1 para los elementos 123 y 124 y [Og] 5g1 para el elemento 125 en adelante.
En los primeros superactínidos, se prevé que las energías de enlace de los electrones agregados sean lo suficientemente pequeñas como para que puedan perder todos sus electrones de valencia; por ejemplo, el unbihexio (elemento 126) podría formar fácilmente un estado de oxidación +8 y pueden ser posibles estados de oxidación aún más altos para los siguientes elementos. También se predice que el elemento 126 mostrará una variedad de otros estados de oxidación: cálculos recientes han sugerido que un monofluoruro 126F estable puede ser posible, como resultado de una interacción de enlace entre el orbital 5g en el elemento 126 y el orbital 2p en el flúor. Otros estados de oxidación predichos incluyen +2, +4 y +6; se espera que +4 sea el estado de oxidación más habitual de unbihexio. Se calcula que los superactínidos desde unbipentio (elemento 125) hasta unbiennio (elemento 129) presentarán un estado de oxidación +6 y formarán hexafluoruros, aunque se predice que 125F6 y 126F6 estarán unidos relativamente débiles.11 Se espera que las energías de disociación de enlace aumenten considerablemente en el elemento 127 y aún más en el 129. Esto sugiere un cambio de carácter iónico fuerte en los fluoruros del elemento 125 a una reacción más covalente, que involucra el orbital 8p, en los fluoruros del elemento 129. El enlace en estos hexafluoruros de superactínidos se da principalmente entre la subcapa 8p más alta de los superactínidos y la subcapa 2p del flúor, a diferencia de cómo el uranio usa sus orbitales 5f y 6d para unirse en el hexafluoruro de uranio.
A pesar de la capacidad de los primeros superactínidos para alcanzar altos estados de oxidación, se ha calculado que los electrones 5g serán los más difíciles de ionizar; se espera que los iones 1256+ y 1267+ tengan una configuración 5g1, similar a la configuración 5f1 del ion Np6+. Se observa un comportamiento similar en la baja actividad química de los electrones 4f en los lantánidos; esto es consecuencia de que los orbitales 5g son pequeños y están profundamente adentrados en la nube de electrones. La presencia de electrones en los orbitales g, que no existen en la configuración electrónica del estado fundamental de ningún elemento actualmente conocido, debería permitir orbitales híbridos desconocidos para formar e influir en la química de los superactínidos de nuevas formas, aunque la ausencia de electrones g en elementos conocidos hace que la predicción de la química de los superactínidos sea más difícil.
En los superactínidos posteriores, los estados de oxidación deberían ser más bajos. Por el elemento 132, el estado de oxidación predominante más estable será solo +6; esto se reduce aún más a +3 y +4 por el elemento 144 y al final de la serie de superactínidos será solo +2 (y posiblemente incluso 0) porque la capa 6f, que se está llenando en ese punto, está muy adentro la nube de electrones y los electrones 8p1/2 están demasiado unidos para ser químicamente activos. La capa 5g debería llenarse en el elemento 144 y la capa 6f alrededor del elemento 154; en esta región de los superactínidos los electrones 8p1/2 están unidos con tanta fuerza que ya no son químicamente activos, por lo que solo pueden participar unos pocos electrones en reacciones químicas. Los cálculos de Fricke et al. (1971) predicen que en el elemento 154 la capa 6f estará llena y no hay electrones d u otras funciones de onda de electrones fuera de las capas químicamente inactivas 8s y 8p1/2. Esto puede hacer que el elemento 154 sea poco reactivo con propiedades similares a las de los gases nobles. No obstante, los cálculos de Pyykkö (2011) teorizan que en el elemento 155 la capa 6f sigue siendo químicamente ionizable: 1553+ debería tener una capa 6f completa y el cuarto potencial de ionización debería estar entre los del terbio y el disprosio, ambos conocidos en el estado +4.
De manera similar a las contracciones de lantánidos y actínidos, debe haber una contracción de superactínidos en la serie donde los radios iónicos de los superactínidos son más pequeños de lo esperado. En los lantánidos, la contracción es de unos 4.4 pm por elemento; en los actínidos, es de unos 3 pm por elemento. La contracción es mayor en los lantánidos que en los actínidos debido a la mayor localización de la función de onda 4f en comparación con la función de onda 5f. Las comparaciones con las funciones de onda de los electrones externos de los lantánidos, actínidos y superactínidos conducen a una predicción de una contracción de alrededor de 2 pm por elemento en los superactínidos; aunque esto es menor que las contracciones en los lantánidos y actínidos, su efecto total es mayor debido al hecho de que 32 electrones se llenan en las capas profundamente adentradas 5g y 6f, en lugar de solo 14 electrones en las capas 4f y 5f en los lantánidos y actínidos respectivamente.
Modelo de tabla periódica extendida por Pyykkö (2011).
Pyykkö (2011) divide estos superactínidos en tres series: una serie 5g (elementos 121 a 138), una serie 8p1/2 (elementos 139 a 140) y una serie 6f (elementos 141 a 155); también señala que habría una gran superposición entre los niveles de energía y que los orbitales 6f, 7d o 8p1/2 también podrían estar ocupados en los primeros átomos o iones de superactínidos. También espera que se comporten más como «superlantánidos», en el sentido de que los electrones 5g serían en su mayoría químicamente inactivos, de manera similar a cómo solo uno o dos electrones 4f en cada lantánido se ionizan en compuestos químicos. También predijo que los posibles estados de oxidación de los superactínidos podrían aumentar mucho en la serie 6f, a valores como +12 en el elemento 148.
Modelo de tabla periódica extendida por Kulsha (2011) También presentó una segunda versión en 2016.
Kulsha (2011) ha llamado a la serie de 121 a 156 «elementos de ultransición» y ha propuesto dividirlos en dos series de dieciocho elementos, una entre 121 y 138 y otra de 139 a 156. La primera sería análoga a la los lantánidos, con estados de oxidación que van principalmente de +4 a +6, ya que domina el llenado de la capa 5g y los elementos vecinos son muy similares entre sí, creando una analogía con el uranio, el neptunio y el plutonio. La segunda sería análoga a los actínidos: al principio (alrededor de los elementos en los 140s) se esperarían estados de oxidación muy altos a medida que la capa 6f sube por encima de la 7d, pero después de eso los estados de oxidación típicos bajarían y en elementos en el 150s en adelante los electrones 8p1/2 dejarían de ser químicamente activos. Debido a que las dos filas están separadas por la adición de una subcapa 5g18 completa, también podrían considerarse análogas entre sí.
Como ejemplo de los últimos superactínidos, se espera que el elemento 156 presente principalmente el estado de oxidación +2, debido a su configuración electrónica con electrones 7d2 fácilmente eliminados sobre un núcleo estable [Og] 5g186f148s28p2
1/2. Por lo tanto, puede considerarse un congénere más pesado del nobelio, que también tiene un par de electrones 7s2 fácilmente eliminados sobre un núcleo estable [Rn]5f14 y generalmente se encuentra en el estado +2 (se requieren oxidantes fuertes para obtener nobelio en el estado +3). Su primera energía de ionización debería ser de unos 400 kJ/mol y su radio metálico de unos 170 pm. Con una masa atómica relativa de alrededor de 445 u, debería ser un metal muy pesado con una densidad de alrededor de 26 g/cm3.
Tabla de nucleidos de los modos de desintegración β conocidos y predichos hasta = 149, = 256. Las casillas negras indican la línea de estabilidad β predicha, que concuerda con los datos experimentales. En = 126 (arriba a la derecha), la línea de estabilidad β atraviesa una región o «mar» de inestabilidad teóricamente susceptible a la fisión espontánea (vida media inferior a 1 ns) y se extiende a un «cabo» de estabilidad cerca de la capa de cierre = 228. Se prevé que las llamadas islas de estabilidad estén alrededor de 294Ds y 354Ubh, más allá de las cuales el modelo parece desviarse de varias reglas de la fórmula de masa semiempírica.
El modelo en capas que describe la estructura nuclear implica la existencia de «números mágicos» por tipo de nucleón debido a una estratificación de neutrones N y protones Z en niveles de energía cuántica en el núcleo, como ocurre con los electrones al nivel del átomo. En este modelo, los números mágicos corresponden a la saturación de una capa nuclear por un tipo de nucleones, por lo que existe una mayor estabilidad de todo el núcleo; estos números son:
2, 8, 20, 28, 50, 82, 126, 184.
Este modelo en capas permite, en particular, explicar las diferencias en la energía de enlace nuclear observadas en los átomos en comparación con los resultados de la fórmula de Weizsäcker basada en el modelo de la gota líquida del núcleo atómico o incluso explicar por qué el tecnecio no tiene isótopos estables. Los núcleos «doblemente mágicos», formados por un número mágico de protones y de neutrones, son particularmente estables. Desde este punto de vista, podría existir una «isla de estabilidad» alrededor del unbihexio 310Ubh, doblemente mágico con 126 protones y 184 neutrones.
Por tanto, los primeros miembros de la serie de los superactínidos y en particular la primera mitad de los elementos del bloque g (hasta Z ≈ 130), podrían tener isótopos significativamente más estables que los otros nucleidos superpesados, con vidas medias que alcanzan unos pocos segundos; según la teoría de campo medio relativista, la particular estabilidad de estos nucleidos se debe a un efecto de acoplamiento cuántico de los mesones �,19 uno de los nueve llamados mesones «sin sabor».
Sin embargo, los límites exactos de esta hipotética isla de estabilidad no están claramente establecidos, porque los números mágicos de los núcleos superpesados parecen más difíciles de especificar que los de los núcleos ligeros, de modo que, según los modelos, teóricamente se encontraría el siguiente número mágico para Z entre 114 y 126.
Valores propios de energía para las capas 1s, 2s, 2p1/2 y 2p3/2 a partir de soluciones de la ecuación de Dirac, teniendo en cuenta el tamaño finito del núcleo, para
�
= 135–175 (–·–), para el potencial de Thomas-Fermi (—) y para
�
= 160–170 con el potencial autoconsistente (---).
Por otro lado, no es seguro que la existencia de átomos tan pesados sea físicamente posible, ya que la repulsión electrostática de muchos protones en el mismo núcleo induciría la fisión espontánea o la fuga de protones en exceso para decaer en números atómicos más bajos. De hecho, se considera que la fisión espontánea es posible cuando
�2/�≥45
, que es precisamente el caso de 310Ubh (desde
1262/310≈45
); si el efecto de los números mágicos predichos por la teoría de las capas del núcleo atómico se verifica también para este isótopo, en todo caso se volverá inestable por su propia conformación elíptica.
Además, varias ecuaciones involucran el producto
��
, en el que
�
representa la constante de estructura fina, y solamente son válidas cuando este producto es menor que 1; como
�≈1/137
, surge el problema del untriseptio, a veces denominado feynmanio (símbolo Fy), ya que, según una «leyenda popular» entre físicos, Richard Feynman lo indicó como el último elemento de la tabla periódica que posee estados neutros estables:25
Según el modelo de Bohr, no relativista, la velocidad de un electrón en la subcapa 1s en
�
> 137 sería mayor que la velocidad de la luz
�
:
�=���≈�137.036�
La ecuación de Dirac también se vuelve inaplicable más allá de
�
> 137 por la misma razón, al expresar la energía de un átomo en el estado fundamental mediante:
�=���21−�2�2
donde
��
es la masa en reposo del electrón. Por esto, Feynman sugirió que los átomos neutros no pueden existir más allá del untriseptio y que, por tanto, la tabla periódica de elementos terminaría en este punto.25
Estas ecuaciones son aproximadas y no tienen en cuenta, por ejemplo, la dimensión distinta de cero de los núcleos atómicos —son más sensibles cuanto más pesados son los átomos— ni siquiera la teoría de la relatividad —caso del modelo de Bohr—, por lo que no implican la inexistencia de núcleos con 137 protones y más; pero esto sugiere un límite físico para el número atómico
�
tal como se conceptualiza habitualmente, con propiedades particulares para los átomos superpesados (del orden de
�
= 150 y más allá), para los cuales la energía de los electrones representaría dos o tres veces su masa en reposo, lo que es 511 keV) si realmente existieran. (Los electrones relativistas de tales átomos podrían, en particular, generar pares de electrones y positrones en lugar de fotones al cambiar los niveles de energía.)
Si se tienen en cuenta los efectos relativistas en la estructura de la procesión electrónica de tales átomos, el límite parece estar situado hacia
�
≈ 173 electrones en lugar de 137, mientras que el mismo razonamiento aplicado a los núcleos resulta en un límite hacia
�
≈ 210 protones. Desde el punto de vista de los niveles de energía nuclear, el límite también estaría en 173 protones: un protón 174 llevaría la energía de la capa nuclear 1s1/2 más allá de 511 keV, lo que induciría la desintegración β+ de este protón por emisión de un positrón y un neutrino electrónico.
Otras consideraciones más prácticas llevan a tomar en cuenta el límite físico del número atómico en niveles mucho más bajos, no superando
�
≈ 130, justo más allá de la hipotética isla de estabilidad.29
Los únicos elementos en esta región de la tabla periódica para los que hubo intentos de síntesis son los elementos 122, 124, 126 y 127. Presuntamente, los elementos de esta zona son muy inestables en relación con la desintegración radiactiva y tienen una vida media extremadamente corta, con la posible excepción del elemento 126.
Nomenclatura química de los compuestos inorgánicos (para consultar los números de valencia de los elementos)