Although range and interquartile range are a measure of spread both of them have issues as they only take into account two values in the calculation. So we need to consider other measures of spread, this includes standard deviation.
Using your calculator and the videos above lets find the standard deviation of the following data sets:
a) 5.75
b) 2.26
The mean and standard deviation are really important statistical calculations that help us to easily analyse and compare different data sets. Have a look at the question below:
ai. Girls: mean = 163 cm and standard deviation = 7.6
ii. Boys: mean = 168.33 cm and standard deviation = 8.64
iii. Class: mean = 165.76 cm and standard deviation = 8.58
b) The group of boys have a greater spread of heights as the standard deviation is the largest.
c) The mean height of the boys was higher, but the girls had a smaller spread of data.
We can also calculate the standard deviation in google sheets.
For your data set can you use technology to calculate the standard deviation. Compare this to your range and interquartile range from before, what can you deduce about the data. Have you got any outliers in your data and has that affected your range more than your standard deviation.