References
1. Chi, Y., Dai, W., Lu, Z., Wang, M., & Zhao, Y. (2018). Real-Time Estimation for Cutting Tool Wear Based on Modal Analysis of Monitored Signals. Applied Sciences, 8(5), 708.
2. Huang, S. N., Tan, K. K., Wong, Y. S., de Silva, C. W., Goh, H. L., & Tan, W. W. (2007). Tool wear detection and fault diagnosis based on cutting force monitoring. International Journal of Machine Tools and Manufacture, 47(3-4), 444–451.
3. Alonso, F.J. and Salgado, D.R. (2008). Analysis of the structure of vibration signals for tool wear detection. Mechanical Systems and Signal Processing, 22(4), pp.735–748. doi:10.1016/j.ymssp.2007.09.012.
4. Razika, A. and Idriss, A. (2018). Frequency Analysis of the Tool with and without Wear during Turning by Modal Analysis. Journal of Material Sciences & Engineering, 7(3), p.462. doi:10.4172/2169-0022.1000462.
5. Jia, P., Rong, Y. and Huang, Y. (2019). Condition monitoring of the feed drive system of a machine tool based on long-term operational modal analysis. International Journal of Machine Tools and Manufacture, 146, p.103454. doi:10.1016/j.ijmachtools.2019.103454.
6. Aralikatti, S.S. et al. (2020). Comparative Study on Tool Fault Diagnosis Methods Using Vibration Signals and Cutting Force Signals by Machine Learning Technique. Structural Durability & Health Monitoring, 14(2), pp.127–145. doi:10.32604/sdhm.2020.07595.
7. uan, J., Liu, L., Yang, Z. and Zhang, Y. (2020). Tool Wear Condition Monitoring by Combining Variational Mode Decomposition and Ensemble Learning. Sensors, 20(21), p.6113. doi:10.3390/s20216113.
8. Chen, Y., Zhang, H., Li, X., Shi, D., Shi, Z. and Gu, F. (2024). Wear Parameters Identification of Hydrodynamic Bearing Based on Operational Modal Analysis and On-Rotor Sensing Technology. SSRN Electronic Journal. doi:10.2139/ssrn.4762453.
9. Jangali, S. G., Gaitonde, V. N., Kulkarni, V. N., & Madhusudhana, H. K. (2021). Analyzing the effect of cutting parameters on forces and tool-tip temperature in turning of nickel-based superalloy using FE simulation. Materials Today: Proceedings, 49, 1833–1843. https://doi.org/10.1016/j.matpr.2021.08.054