Stage I.1: 軟體建置資料模型
Stage I.1: 軟體建置資料模型
Stage I.1: QCI Data Model
Whisper-Taiwanese model V0.5 (Tv0.5): 這個模型是由國立臺南大學執行國科會產學合作計畫,使用 openai/whisper-large-v3-turbo 微調的版本,並執行國科會TAIDE台英語家庭先導計畫,與真平出版社合作,使用中小學教材內容及學生學習資料進行模型微調,用於真平教材台語辨識。並與國研院國網中心合作,運用國網中心算力以及TAIDE模型,共同建構中小學台語AI學習模型。
Model Details
Base Model: OpenAI whisper-large-v3-turbo
Fine-tuned for: 台灣台語語音辨識 (ASR)
Fine-tuning Framework: Hugging Face Transformers
Training Duration: 使用兩片 V100,大約 180 小時
Dataset: 自訂資料集、教育部臺灣台語常用詞辭典,大約 90 小時的資料
Input Format: 16kHz mono WAV
License: CC BY-NC 4.0
Step 1: Download the Sample Code from here
Step 2: Log in to your Google account
Step 3: Connect to Colab
Step 4: Click on the File menu, then select Upload notebook to upload the sample code
Step 5: Click on the Runtime menu and select Change runtime type. Set it to Python 3 and T4GPU
Step 5.1: Download Whisper-Taiwanese Tv0.5 Model (NUTN-KWS/Whisper-Taiwanese-model-v0.5) from Hugging Face
Step 5.2: Learn how to speak Taiwanese by referring to this webpage
Step 5.3: Speak in Taiwanese and record your audio or upload this sample audio to experience
Step 5.4: Execute ASR (Automatic Speech Recognition) to convert your Taiwanese audio to Chinese text by Tv0.5 Model
Step 5.5: Download the Chinese-to-English translation model (Helsinki-NLP/opus-mt-zh-en) from Hugging Face
Step 5.6: Translate the Chinese text into English text by the opus-mt-zh-en Model
Step 6: End
實作教學影片