All about Circuits
Encyclopedia of Electric Componments -Charles Platt "1,2,3
(Wichtiges Verständnis: Leistung von Wiederständen, obwohl die Widerstände den gleichen Wert haben!)
Conducting (= musik. Dirigent) => Conductance (= Leitfähigkeit), Mess -instruments
... Leitfähigkeit ~Widerstand
“I will simply express my strong belief, that that point of self-education which consists in teaching the mind to resist its desires and inclinations, until they are proved to be right, is the most important of all, not only in things of natural philosophy, but in every department of daily life.”
― Michael Faraday [1]
"I have succeeded in making the acquaintance of Faraday, who is the leading physicist of England and Europe... He is artless, kind, and unpretentious like a child; I never met a more attractive man... He was invariably obliging and showed me everything worth seeing. But it was not much to look at, because he is using for making his great discoveries old pieces of wood, wire, and iron."
Hermann von Helmholtz, 1853:
Now: You can use a coil for:
a) Maximize Power Transmission (Imaginery = 0)
b) Pulling Large Objects via the Magnet
c) Transfer Signals across Isolators ('infinite resistance')
Grace Hopper used to say: 1m of a wire is approximately 1ns!
Thus 1mm -> 1ps is the speed of transmission.
Ivan Sutherland used to say 'Johnson Noise' is related to the resistance. Thus you like to have you signal above the noise and therefore cool your circuits. (0..4 Kelvin)
-> Important for Satellites or Quantumcomputing! :)
This is called Superconductivity and you'll see it below 0.125Ω.+ cooling below 4,2 Kelvin.
Anfangs hatte man über Federn die Elektrischen Ladungen u.a. nachgewiesen.
Anschließend durch mechanische Reibungen weitere Ladungsträger für Anziehungen generiert (aller Elemente), und folgend die Leitfähigkeit von Metallen beobachtet.
Dadurch konnten auch Ladungsunterschiede über zwei Leiter beobachtet werden, die die Feder jeweils abwechseln anzogen.
Mit Oersted, konnte der Effekt von elektrischen Leitern auf Magnetnadeln (Compass) nachgewiesen werden.
Dadurch hatte man erst dann die elektrischen Leiter für magnetische Wirkungen für das Anziehen von Massen (in einem Wegabstand) genutzt.
Ferromagnetismus: Die Magnetisierung kann über die ferromagnetische Curie Temperatur zerstört werden.
Mit Faraday konnte ebenfalls die Magnetische Wirkung auf elektromagnetische Wellen (Licht) beobachten. Dadurch konnte ohne dem Magnetischen Feld das Prisma entweder das Licht, wie gewohnt auf dem Transparent abbilden, und mit dem Magnetischen Feld das Prisma nicht das Transparent erreichen. Dadurch konnte die elektromagnetische Wechselwirkung von Licht nachgewiesen werden.
Auf Marktplätzen wurden jedoch gewickelte Hufeisenmagneten genutzt, um schwere Objekte zu heben. (Trick: Drähte müssen isoliert voneinander sein und mehrere Wicklungen mit + und - Polen müssen freigelegt werden mit jeweils einer Batterie)
> Magnetische Spannung oder damals 'Electromotive Force' entsteht durch ein zirkulierendes E-Feld.
Außerhalb des stromdurchflossenen Leiters: H = I/ 2Pi*r
Innerhalb des stromdurchflossenen Leiters: H = N*I / l (l .. Länge: 2Pi*r*l)
Notable: Gauß & Weber fanden vor Kirchhof die Stromkreise.
Schüler von Kelvin: Erfinder der Hysterese
Somit bilden sich aus den 4 Maxwell Gleichungen (Beschreiben alle elektrischen Phänomene) jeweils nur 2x Stromgleichung und 2x magnetische Stromgleichung aus.
Light Intensity - Light Bulbs+ LED Chain Similar to Tour Eiffel via Edison.
Current - Loud Speaker (Tones), > Similiar to Bell Telephone for Orphan.
Temperature - Solderiron > Similiar to Industrialization. (or Joule Beer)
Motors:
Space - Motor Vehicle (Similar to Ferraris, etc.)
Time - Clock (Electric)
Amount of Subs. - Motor > Pump for Footballs/ Fluid Pump
Mass - 2D- Plotter (Pulling), -> 3D Print
This can be expanded. (Stage2)
Light bulbs can turn into Displays.
Current can be expanded to Amplifier.
Temperature can be expanded to Scales or Water cooker.
Motors can be finetuned to Arms. (3D print)
Time can be used to build on Displays, Sound Amplifier, Oscillator, Watercooker, or Motor a different sequence.
Amount of Subs can be used to make a fountain.
Mass can be used to make a Lifter.
Or you can mix all these: Water fountain with music. (Wasser-Orgel)
Light for Microscopes. Current as Radios or Clocks as CPU's.
>> Also every single Physical Sensor.
The Base is how to control the Current. (then you can apply/calculate it to different units)
Hard time remembering all the Equation?
Another shortcut:
U R U t U L
--- = --- = --- --- = ---
I I C I t
Voltage is 90° faster, then the Current (V -> t, Capacitor(C)). Eq. from orig. C=Q/U
Current is 90° faster, then the Voltage (I -> t, Inductance (L)) Eq. from orig. L =φ/I
Change t = 1/2πf and you receive your Impedances. (1/2πf*C) or. (2πf*L)
impedance is just the resistance(DC) in AC. Such for Capacitance and Inductance.
After that use all the Resistance Simplification. (Parallel, Series Rules).
Die Materialbegriffe stammen alle von Heaviside. (auch 'Voltage' von dem damaligen geführten Begriff 'Pressure')
wie z.B. Dielektrikum, Permeabilität, Impedanz, etc.
(Die 4 Maxwell gleichungen sind eigl die 8x Heaviside Gleichung. Ursprünglich gab es 20 Maxwellgleichung, die Heaviside auf 8 mithilfe der Vektornotation komprimierte. Erst Hendrik Lorentz brachte mit der Speziellen Relativität die 8 Gleichungen auf 4 Gleichungen.)
If you want a good shortcut:
Imagine a resistor a diode a transistor (BJT).
Imagine a Wien-Bridge a Rectifier an Operation Amplifier(Precisely only the Differential Amp part) or a Mixer!
(Now the trick: You can turn a transistor into a resistance. Connect the C to B. Voila!
You can have a Wien-Bridge. Let it flow only through B and E, (not C), Voila! You have a diode/ rectifier! This thought flow might help you, generalize the concept (measure in between two parallel resistance paths. -> Wien Bridge)
You can connect now the 4 transistors, also into the Logics (Not, -> Nand and Nor)
if you have a big resistance in parallel (||) with a small resistance, then you can abstract it 'There is only a small resistance.'
However, it is necessary to consider the big resistance. If f.e. the small resistance breaks through a lot of heat, then obviously the current flows through the other resistance remains. (Fuse f.e.). This would be the circuit for a fuse too.
They say 'Bypass' Capacitor, but think of it as a filter.
> Congratulation! You are now in the state of Basics: 1960s circuits!
(P.S: Real resistor have a capacitive and inductive part. Thus 'ESR' is important.
They depend on the frequency.)
"Birthplace of Silicon Valleys"
Brothers: Hewlett and Packard tinkering in a Garage for Scientifique Instrument.
> An Oscillator.
"Die Brückenschaltung wurde 1891 von Max Wien erfunden.[1] Die Oszillatorschaltung ist Ergebnis der Doktorarbeit von William Hewlett an der Stanford University im Jahr 1939.[2] Als Verstärker verwendete er zwei Elektronenröhren. Zur Verstärkungsregelung diente bereits in der Patentschrift vom 11. Juli 1939 das Kaltleiterverhalten einer Glühlampe, die als Kathodenwiderstand für eine der beiden Trioden diente. Solche Kaltleiter wurden auch später bei vielen Labor-Tongeneratoren bis in die 1980er Jahre zur Amplitudenregelung angewandt.
Um seine Erfindung zu vermarkten, gründete William Hewlett zusammen mit David Packard die Firma Hewlett-Packard, deren erstes Erzeugnis der Wien bridge oscillator HP200A war. Sein Lehrer Frederick Terman sagte später, dass dieser Oszillator das Fundament für die Firma Hewlett-Packard gewesen sei."
https://de.wikipedia.org/wiki/Wien-Robinson-Br%C3%BCcke
From Voltage (Cause) until the Current (Effect) are electric circuits supplied.
Currents are therefore created by a voltage difference across a resistance (Material).
Another etymological reference is 'Conductance' from the Conductor in the music Opera. (Conductance is the inverse term of resistance. Thus quite the same)
Hence Currents can be regarded as waves like in music, as well.
They carry all frequency spectrums similar to each music ensemble' and thus transmit currents melodic (Frequency = 0 = constant current, Frequency > 0 Sinusoid).
While Currents contain magnetic properties to pull objects (Electromagnets), they can also carry heat (Wires, which were applied for the heat exchangers first invented by Joule: H = (I^2 * R) * t. H.. Heat (it is an energy)
Therefore they can be utilized not only for motors but also in deeper understanding as heaters or even radio waves (german Hertz). While 'Fourier' is applied to express the vast numbers of frequencies, he applied it first to the thermic equation ('Fourier Law' is similar like R = U/I but for thermic equation), thus practitioners applied it to electric currents.
One can therefore build a radio or store music contents electrically, while there were already mechanical phonograms.
Current even shed light on the eye of people (Davy, Edison, ..) to combat the crime.
The 'Current' is the 2nd most expense of companies (after 1st Human Labor), which is vital for any transformative device (Toasters, fridges, lights, electric pumps, etc.), which I see as an impedance. This included any radiation device from Röntgen/Xray, MRI, or proton amplifier.
One, who understands 'currents' or 'flows', can apply it to any application, harness the power of electricity in nature and also formulate:
'Let there be light!.' ... 1/ sqrt(μ0*ε0)
Sidenote: if you are sophisticated, then you can calculate it to any mass or physical reference by electric currents. They are obviously faster than gas. If you say 'electron', the trained electric engineer, knows its formula instead of the sole word 'electron'. I see a quantified wave part. From Vision, Hearing, or Smell (5 senses), electric engineers can quantify it, as well, while being closer to nature, than theoretical thoughts. There is from its own little lab to Los Alamos Lab a responsibility for those, that have the ability or courage to become electric engineers.
Maxwells Gleichungsbegriffe (1+3. Stromgleichung , 2+4. magn. Stromgleichung)
(1) Elektrische Ladung Q .. Gauß Law I.
(2) Magnetische Ladung ɸ.. Gauß Law II.
(3) Kelvin-Stokes Gleichung (Amperes Law).. simplfied: I = Q/t
(4) Faraday-Maxwell Gleichung (Induktionsgesetz) simplified: I_mag =ɸ/t
I_mag ist hier auch gleich der =induzierten Spannung. (I_mag = U) Es wird aus Vereinfachungsgründen gewählt, wegen der Form:
Widerstand = U/I ergo:
magnetischen Widerstand = V / I_mag gebildet. (neu)
magnetischen Widerstand = I / U_ind gebildet. (eigl.)
V .. magnetische Spannung
Viele kennen vermutlich: U = ɸ/t = (B*A) /t aus der Schulzeit.
(Recap from School. However, this isn't university)
Original Apparatus: of Heinrich Hertz, Electromagnetic Experiments.
1.) 50 MHz Transmitter Spark Gap 2.) Wire grid for polarization experiments 3.)Vacuum apparatus for cathode ray experiments
4.) Hot-Wire galvanometer 5.) Reiss o Knochenhauer spirals 6) Rolled-paper galvanometer 7.) Metal sphere probe
8.) Reiss spark micrometer 9.) Coaxial line 10- 12.) Equipment for dielectric polarization effects 13.) Mercury Induction Coill interrupter 14.) Meidinger cell, 15.) Bell Jar, 16.) Induction Coil, 17.) Bunsen Antenne, 18.) Large-area conductor for charge storage, 19.) Circular Loop receiving antenna, 20.) Eight sided receiver detector. 21.) Rotating mirror and mercury interrupter
22.) Square loop receiving antenna, 23.) Equipment for refraction and dielectric constant measurement, 24.) 2x square loop receiving antenna, 25.) Square Loop receiving antenna. 26.) Transmitter Dipole, 27.) Induction Coil, 28.) Coaxial line , 29.) High-voltage discharger, 30.) Cylindrical parabolic reflector/receiver, 31.) Cylindrical parabolic reflector/transmitter, 32.) Circular Loop receiving antenna., 33.) Planar reflector, 34,35.) Battery of accumulators
Photographed 1.Octobre.1913 Bayrische Academie der Wissenschaften, München, mit Hertz Assistenten Julius Amman