Натуральные числа возникли в глубокой древности как результат счета различных предметов: людей, животных, птиц, деревьев, орудий труда и т.д. Ряд натуральных чисел:
1, 2, 3, 4, 5, …
является бесконечным и называется натуральным рядом.
Сложение является начальным понятием, для которого невозможно дать строгое формальное определение. Тем не менее, чтобы придать этому действию некоторое разумное представление, мы скажем, что сложение – это операция нахождения суммы двух или нескольких чисел, где под суммой понимается общее количество единиц, содержащихся в рассматриваемых числах вместе. Эти числа называются слагаемыми. Например, 11 + 6 = 17. Здесь 11 и 6 – слагаемые, 17 – сумма. Если слагаемые поменять местами, то сумма не изменится: 11 + 6 = 17 и 6 + 11 = 17.
Вычитание является действием, обратным к сложению, так как это операция нахождения одного из слагаемых по сумме и другому слагаемому. Вычесть из одного числа (уменьшаемого) другое (вычитаемое) - значит найти такое третье число (разность), которое при сложении с вычитаемым дает уменьшаемое: 17 – 6 = 11. Здесь 17 – уменьшаемое, 6 – вычитаемое, 11 – разность.
Умножение. Умножить одно число n (множимое) на другое целое число m (множитель) - значит повторить множимое n в качестве слагаемого m раз. Результат умножения называется произведением. Запись операции умножения: n ∙ m . Например,
12
4 = 12 + 12 + 12 + 12 = 48. Таким образом, 12 4 = 48 или 12 ∙ 4 = 48. Здесь 12 – множимое, 4 – множитель, 48 – произведение. Если множимое n и множитель m поменять местами, то произведение не изменится. Например, 12 · 4 = 12 + 12 + 12 + 12 = 48 и соответственно, 4 · 12 = 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 = 48. Поэтому множимое и множитель часто называются сомножителями.
Деление является действием, обратным к умножению, так как это операция нахождения одного из сомножителей по произведению и другому сомножителю: Разделить одно число (делимое) на другое (делитель) – значит найти такое третье число (частное), которое при умножении на делитель даёт делимое: 48 : 4 = 12. Здесь 48 – делимое, 4 – делитель, 12 – частное. Частное от деления одного целого числа на другое целое число может и не быть целым числом. Тогда это частное представляется в виде дроби. Если частное – целое число, то говорят, что эти числа делятся нацело. В противном случае мы выполняем деление с остатком. Пример: 23 не делится на 4, в этом случае мы можем записать: 23 = 5 · 4 + 3. Здесь 3 – остаток.
Возведение в степень. Возвести число (основание степени) в целую степень (показатель степени) – значит повторить его множителем столько раз, каков показатель степени. Результат называется степенью. Запись возведения в степень:
3 = 3 · 3 · 3 · 3 · 3 = 243 .
Здесь 3 – основание степени, 5 – показатель степени, 243 – степень.
Вторая степень любого числа называется квадратом, третья – кубом. Первой степенью любого числа является само это число.
Порядок действия. Результат выполнения нескольких операций зависит, вообще говоря, от порядка действий. Например, 8 – 3 + 4 = 9. Однако, если сначала сложить 3 и 4, а затем вычесть полученную сумму из 8, то получим 1. Таким образом, для получения правильного результата должен быть установлен определённый порядок действий. Чтобы указать, в каком порядке должны выполняться действия, пользуются скобками. Если скобки отсутствуют, действия выполняются в следующем порядке:
1) возведение в степень и извлечение корня (в порядке их следования);
2) умножение и деление (в порядке их следования);
3) сложение и вычитание (в порядке их следования).
При наличии скобок сначала выполняются действия в скобках в указанном выше порядке, а затем все остальные действия вне скобок опять же с соблюдением указанного выше порядка.