seps

2.2.4.B

SEPS

Sbiis Saibian's Extended Prefix System

" If such systems seem confusing and obtuse it's not because an effort hasn't been made to extend the BIPM system in a logical and simple way. Rather the difficulty lies in the fact that all such systems will inevitably become more complex and more difficult to work with as the range of expressibility increases. "

-- Sbiis Saibian

Go Back Home

Return to 2.2.4 - Sbiis Saibian's Extended Prefixes (2009)

PREV<< Proposal I - EMPS

PROPOSAL II : SBIIS SAIBIAN'S EXTENDED PREFIX SYSTEM

TRUNCATED NUMERIC BASED APPROACH

Responding to the shortcomings of other systems I later decided to come up with a truly original system of my own. I studied the various existing systems and used those ideas to shape my own prefix system. Generally I reject the "backwards through the alphabet" idea that was championed by Paul Shuch, Jeff Aronson, and Jim Blowers. There are 2 problems with it. First and foremost, you would eventually run out of letters, unless you decided to loop through the alphabet indefinitely. The other problem has to do with coming up with a scheme to append any letter to a numeric root word. The results are usually not very satificatory names, unless you work the prefixes out one - by - one without a predetermined pattern. But this usually leads to a series of difficult to remember names with even more confusing prefix symbols ( because your constantly forced to find ways not to use the same symbols ). At the same time however I don't go to the other extreme and discard the idea completely. I just don't think that pattern can be maintained for very long. In My extended prefix system, I go back through the alphabet all the way to "u", but after this I switch to a purely numeric based scheme. My idea was simple. Since directly applying the latin lead to ridiculously long prefix names, I wanted to create a "truncated" scheme. The key is to choose small word elements to represent the groups of ones and tens inside the prefix. I based these components on both latin and greek numbers. There is some precedence for this. peta, and exa are apparently based on greek for 5 and 6, while zetta and yotta are based on latin for 7 and 8. The table below presents my entire system which is worked out to include the first 100 pairs of prefixes. After the table I will give a break down of how my system works, and what extensions maybe possible.

-----------------------------------------------------------------------------------------------

SBIIS SAIBIAN'S EXTENDED PREFIX SYSTEM (SEPS)

Note: Prefixes in red are BIPM certified. Prefixes in Blue are BIPM derived, but the prefix and/or symbol has been modified. Prefixes in grey are unique to SEPS.

SEPS PREFIX SEPS SYMBOL VALUE ETYMOLOGY

deka- Dk- 10^1 deka [greek:10]

deco- dk- 10^-1 deci [latin:1/10]

hecta- H- 10^2 ekato [greek:100]

cento- c- 10^-2 centi [latin:1/100]

kila- K- 10^3 chillia [greek:1000]

milo- m- 10^-3 milli [latin:1/1000]

mega- M- 10^6 BIPM cert.

micro- mi- 10^-6 greek:"small"

giga- G- 10^9 BIPM cert.

nano- n- 10^-9 BIPM cert.

tera- TE- 10^12 tera [greek:monster]

pico- p- 10^-12 BIPM cert.

peta- PE- 10^15 pente [greek:5]

femto- f- 10^-15 BIPM cert.

exa- EX- 10^18 hexe [greek:6]

atto- a- 10^-18 BIPM cert.

zetta- Z- 10^21 BIPM cert.

zepto- z- 10^-21 BIPM cert.

yotta- Y- 10^24 BIPM cert.

yocto- y- 10^-24 BIPM cert.

xenna- X- 10^27 x - enn(e)a

xento- x- 10^-27 x - en(nea) - to

wecca- W- 10^30 w - (d)ec(i) - ca

wecto- w- 10^-30 w - (d)ec(i) - to

venda- V- 10^33 v - (h)end(ek)a

vendo- v- 10^-33 v - (h)end(eka) - o

uada- U- 10^36 u - (un)ad(ek)a

uato- u- 10^-36 u - (un)a(deka) - to

treida- TD- 10^39 trei(s)d(ek)a

trecto- td- 10^-39 tr(eis) - (d)ec(i) - to

quada- QD- 10^42 qua(ttuor) - d(ek)a

quecto- qd- 10^-42 qu(attuor) - (d)ec(i) - to

penda- PD- 10^45 pen(te) - d(ek)a

pecto- pd- 10^-45 p(ente) - (d)ec(i) - to

exeda- XD- 10^48 (h)exe - d(ek)a

exto- xd- 10^-48 (h)ex - to

epada- HD- 10^51 (h)ep - a - d(ek) a

epto- hd- 10^-51 (h)ept(e) - o

ocada- OD- 10^54 oc(to) - a - d(ek)a

ocato- od- 10^-54 oc(to) - ato

enada- ND- 10^57 en(ne)a - d(ek)a

enecto- nd- 10^-57 en(nea) - (d)ec(i) - to

vigema- VG- 10^60 vige(nti) - ma

vigemo- vg- 10^-60 vige(nti) - mo

unca- UC- 10^63 un(a) - (i)c(osi) - a

uncemo- uc- 10^-63 un(a) - (i)c(osi) - emo

duova- DV- 10^66 duo - v(iginti) - a

duvemo- dv- 10^-66 du(o) - v(iginti) - emo

treica- TC- 10^69 trei(s) - (i)c(osi) - a

treceo- tc- 10^-69 tre(is) - (i)c(osi) - eo

quava- QV- 10^72 qua(ttuor) - v(iginti) - a

quaveo- qv- 10^-72 qua(ttuor) - v(iginti) - eo

penca- PC- 10^75 pen(te) - (i)c(osi) - a

peneco- pc- 10^-75 pen(t)e - (i)co(si)

execa- XC- 10^78 (h)exe - (i)c(osi) - a

execo- xc- 10^-78 (h)exe - (i)co(si)

epaca- HC- 10^81 (h)ep(t)a - (i)c(osi) - a

epeco- hc- 10^-81 (h)ep(t)e - (i)co(si)

octeca- OC- 10^84 oct(o) - e - (i)c(osi) - a

octeco- oc- 10^-84 oct(o) - e - (i)co(si)

eneca- NC- 10^87 en(n)e(a) - (i)c(osi) - a

eneco- nc- 10^-87 en(n)e(a) - (i)co(si)

triata- TA- 10^90 tria(n)ta

triemo- ta- 10^-90 tri(anta) - emo

untra- UT- 10^93 untr(iginti) - a

uneno- ut- 10^-93 un - eno

dutra- DT- 10^96 du(o) - tr(iant)a

dueno- dt- 10^-96 du - (tr) - eno

tretra- TT- 10^99 tre(is) - tr(iant)a

treino- tt- 10^-99 trei(s) - no

quatra- QT- 10^102 qua(ttuor) - tr(iant)a

queno- qt- 10^-102 qu(attuor) - eno

petra- PT- 10^105 pe(nte) - tr(iant)a

peneno- pt- 10^-105 pen(te) - eno

exetra- XT- 10^108 (h)exe - tr(iant)a

exeno- xt- 10^-108 (h)exe - no

epatra- HT- 10^111 (h)ep(t)a - tr(iant)a

epano- ht- 10^-111 (h)ep(t)a - no

ocatra- OT- 10^114 oc(to) - a - tr(iant)a

oceno- ot- 10^-114 oc(to) - eno

enetra- NT- 10^117 en(n)e(a) - tr(iant)a

eneno- nt- 10^-117 en(n)e(a) - no

sarata- SA- 10^120 sara(n)ta

saremo- sa- 10^-120 sar(enta) - emo

unsara- US- 10^123 un - s(a)r(ent)a

unsero- us- 10^-123 un - s(arenta) - ero

dusara- DS- 10^126 du(o) - sar(ent)a

dusero- ds- 10^-126 du(o) - s(arenta) -ero

treisa- TS- 10^129 trei(s) - s(arent)a

treiso- ts- 10^-129 trei(s) -s(arenta)o

qusara- QS- 10^132 qu(attuor) - sar(ent)a

qusero- qs- 10^-132 qu(attuor) - s(aranta)ero

pesara- PS- 10^135 pe(nte) - sar(ent)a

pesero- ps- 10^-135 pe(nte) - sero

exsara- XS- 10^138 (h)ex(e) - sar(ent)a

exsero- xs- 10^-138 (h)ex(e) - sero

epsara- HS- 10^141 (h)ep(te) - sar(ent)a

epsero- hs- 10^-141 (h)ep(te) - sero

ocsara- OS- 10^144 oc(to) - sar(ent)a

ocsero- os- 10^-144 oc(to) - sero

ensara- NS- 10^147 en(nea) - sar(ent)a

ensero- ns- 10^-147 en(nea) - sero

penata- PA- 10^150 pena(n)ta

penemo- pa- 10^-150 pen(t)e - mo

unpana- UP- 10^153 un(a) - p(ente) - ana

unpemo- up- 10^-153 un(a) - p(ent)e - mo

dupana- DP- 10^156 du(o) - p(ente) - ana

dupemo- dp- 10^-156 du(o) - p(ent)e - mo

treipa- TP- 10^159 trei(s) - p(ente) - a

trepeo- tp- 10^-159 tre(is) - pe(nte) - o

qupana- QP- 10^162 qu(attuor) - p(ente) - ana

qupemo- qp- 10^-162 qu(attuor) - pe(nte) - mo

pepana- PP- 10^165 pe(nte) - p(ente) - ana

pepemo- pp- 10^-165 pe(nte) - p(ent)e - mo

expana- XP- 10^168 (h)ex(e) - p(ente) - ana

expemo- xp- 10^-168 (h)ex(e) - p(ent)e - mo

hepana- HP- 10^171 he(pte) - p(ente) - ana

hepemo- hp- 10^-171 he(pte) - p(ent)e - mo

ocpana- OP- 10^174 oc(te) - p(ente) - ana

ocpemo- op- 10^-174 oc(te) - p(ent)e - mo

enpana- NP- 10^177 en(nea) - p(ente) - ana

enpemo- np- 10^-177 en(nea) - p(ent)e - mo

exata- XA- 10^180 (h)exa(n)ta

exemo- xa- 10^-180 (h)exe - mo

unexia- UX- 10^183 un(a) - (h)ex(e)ia

unexio- ux- 10^-183 un(a) - (h)ex(e)io

duexia- DX- 10^186 du(o) - (h)ex(e)ia

duexio- dx- 10^-186 du(o) - (h)ex(e)io

trexia- TX- 10^189 tr(eis) - (h)ex(e)ia

trexio- tx- 10^-189 tr(eis) - (h)ex(e)io

quexia- QX- 10^192 qu(attuor) - (h)ex(e)ia

quexio- qx- 10^-192 qu(attuor) - (h)ex(e)io

pexia- PX- 10^195 p(ente) - (h)ex(e)ia

pexio- px- 10^-195 p(ente) - (h)ex(e)io

exexia- XX- 10^198 (h)ex(e) - (h)ex(e)ia

exexio- xx- 10^-198 (h)ex(e) - (h)ex(e)io

epexia- HX- 10^201 (h)ep(te) - (h)ex(e)ia

epexio- hx- 10^-201 (h)ep(te) - (h)ex(e)io

ocexia- OX- 10^204 oc(te) - (h)ex(e)ia

ocexio- ox- 10^-204 oc(te) - (h)ex(e)io

enexia- NX- 10^207 en(nea) - (h)ex(e)ia

enexio- nx- 10^-207 en(nea) - (h)ex(e)io

eptata- HA- 10^210 (h)ept(e) - ata

eptemo- ha- 10^-210 (h)epte - mo

unhepa- UH- 10^213 un(a) - hep(te) - a

unhemo- uh- 10^-213 un(a) - he(pte) - mo

duhepa- DH- 10^216 du(o) - he(pte) - a

duhemo- dh- 10^-216 du(o) - he(pte) - mo

treiha- TH- 10^219 trei(s) - h(epte) - a

treheo- th- 10^-219 tre(is) - he(pte) - o

quhepa- QH- 10^222 qu(attuor) - hep(te) - a

quhemo- qh- 10^-222 qu(attuor) - he(pte) - mo

pehepa- PH- 10^225 pe(nte) - hep(te) - a

pehemo- ph- 10^-225 pe(nte) - he(pte) - mo

exhepa- XH- 10^228 (h)ex(e) - hep(te) - a

exhemo- xh- 10^-228 (h)ex(e) - he(pte) - mo

hehepa- HH- 10^231 he(pte) - hep(te) - a

hehemo- hh- 10^-231 he(pte) - he(pte) - mo

ochepa- OH- 10^234 oc(te) - hep(te) - a

ochemo- oh- 10^-234 oc(te) - he(pte) - mo

enhepa- NH- 10^237 en(nea) - hep(te) - a

enhemo- nh- 10^-237 en(nea) - he(pte) - mo

octata- OA- 10^240 oct(e) - ata

octemo- oa- 10^-240 octe - mo

unocia- UO- 10^243 un - oc(te) - ia

unocio- uo- 10^-243 un - oc(te) - io

duocia- DO- 10^246 du(o) - oc(te) - ia

duocio- do- 10^-246 du(o) - oc(te) - io

trocia- TO- 10^249 tr(eis) - oc(te) - ia

trocio- to- 10^-249 tr(eis) - oc(te) - io

quocia- QO- 10^252 qu(attuor) - oc(te) - ia

quocio- qo- 10^-252 qu(attuor) - oc(te) - io

pocia- PO- 10^255 p(ente) - oc(te) - ia

pocio- po- 10^-255 p(ente) - oc(te) - io

exocia- XO- 10^258 (h)ex(e) - oc(te) - ia

exocio- xo- 10^-258 (h)ex(e) - oc(te) - io

epocia- HO- 10^261 (h)ep(te) - oc(te) - ia

epocio- ho- 10^-261 (h)ep(te) - oc(te) - io

ococia- OO- 10^264 oc(te) - oc(te) - ia

ococio- oo- 10^-264 oc(te) - oc(te) - io

enocia- NO- 10^267 en(nea) - oc(te) - ia

enocio- no- 10^-267 en(nea) - oc(te) - io

enata- NA- 10^270 en(nea) - ata

enemo- na- 10^-270 en(nea) - emo

unenea- UN- 10^273 un - en(n)ea

uneneo- un- 10^-273 un - en(n)e(a) - o

duenea- DN- 10^276 du - en(n)ea

dueneo- dn- 10^-276 du - en(n)e(a) - o

trenea- TN- 10^279 tr(eis) - en(n)ea

treneo- tn- 10^-279 tr(eis) - en(n)e(a) - o

quenea- QN- 10^282 qu(attuor) - en(n)ea

queneo- qn- 10^-282 qu(attuor) - en(n)e(a) - o

pennea- PN- 10^285 pen(te) - (en)nea

penneo- pn- 10^-285 pen(te) - (en)ne(a) - o

exenea- XN- 10^288 (h)ex(e) - en(n)ea

exeneo- xn- 10^-288 (h)ex(e) - en(n)e(a) - o

epenea- HN- 10^291 (h)ep(te) - en(n)ea

epeneo- hn- 10^-291 (h)ep(te) - en(n)e(a) - o

ocenea- ON- 10^294 oc(te) - en(n)ea

oceneo- on- 10^-294 oc(te) - en(n)e(a) - o

enenea- NN- 10^297 en(nea) - en(n)ea

eneneo- nn- 10^-297 en(nea) - en(n)e(a) - o

ecetta- EC- 10^300 ekato [greek:100]

ecemo- ec- 10^-300 ekato [greek:100]

-----------------------------------------------------------------------------------------------

SEPS was specially designed so that no prefix within the first 100 pairs would contain more than 6 letters. This helps give the set a quality similiar to the BIPM prefixes. Consider this example ...

In EMPS the prefix for 10^162 is quattuorquinquagintetta- which has 23 letters ! In SEPS the prefix for the same power is qupana- with only 6 letters. You may see that the first 2 letters "qu-" stand for quattuor-, while the last for letters "-pana-" stand for -quinquagintetta-. Most of the names are formed in this way. I use 2 or 3 letter abbreviations for the ones place, and 3 or 4 letter abbreviations for the tens place. If you look at the etymology you'll see that these components are simply derived from the latin and greek numbers.

The prefix symbols were also strictly limited to 2 letters. In this case, the first letter represents the ones and the second the tens.

You may have noticed that I also included the non-integer powers of 1000. In SEPS it is legal to combine prefixes in one of two manners.

Firstly, if you want to express a integer power of 10 which is not an integer power of 1000, you can append any of the following prefixes, deka, deco, hecta, cento, to one of the integer powers of 1000. However, you must always combine large scale with large scale, and small scale with small scale. It is illegal to combine the two scales. For example centomega- would be illegal, but you could use dekakila- instead.

Secondly, if you want to express a power of 10 greater or smaller than the stand alone prefixes provide for you can append extra prefixes to the largest and smallest prefix. For example, if you can to have a prefix for 10^309, you can simply use giga-ecetta-.

Lastly, prefixes are used to multiply units, but they don't stand alone as numbers. For example "giga-" doesn't mean a billion it means x1,000,000,000, but if no unit is present it is meaningless ( a billion times what ? ). So that the prefixes can be used as numbers I suggest the use of a special suffix, -nac. In this case "-nac" simply means 1. So logically a "kilanac" is 1000x1 or 1000. In the same way we can now coin terms like meganac, giganac, and teranac, in place of million, billion, and trillion.

So now we have a truncated system that goes as far as EMPS. Can we go further with this ? Not without some problems. I have considered extending it further. It's prefectly logical to continue with unecetta- (10^303), unecemo- (10^-303), duecetta- (10^306), duecemo- (10^-306), etc. The problem for me as an issue of keeping things compact yet tiddy. The next logical step seems to be to create a series of hundreds place components and then append them to the end. However, this is inevitably lead to longer more cumbersome names. I would not be able to stay within the limit of 6 letters. Prefix symbols would become groups of 3 letters instead of 2, with the last letter representing the groups of a hundred place. For now I think the system is a sufficient demostration of how far the SI prefixes could potentially be extended without too much trouble.

You can return to the main article, or return home ...

Go Back Home

Return to 2.2.5 - Sbiis Saibian's Extended Prefixes (2009)