Me propongo, con esta serie de entradas, tratar de explicar por encima qué es la radiactividad y cómo nos afecta en nuestra vida cotidiana. Esta primera entrada puede ser un poco aburrida, pero es necesario que entendáis algunos conceptos muy básicos para posteriormente poder las demás entradas (creedme, valdrá la pena), que hablarán de:
Señal de riesgo por radiación Ionizante. Crédito: Wikipedia.
El origen de la radioactividad natural y otras generalidades.
El funcionamiento de las centrales nucleares y el ciclo del combustible.
Algunos de los accidentes nucleares mas importantes (posiblemente serán: Detonación Bravo, MAYAK, satelite SNAP-9A, Palomares, Three Mile Island y Chernobil).
Residuos radioactivos y cómo gestionarlos.
Usos de la radioactividad.
Historia de la radioactividad (No es seguro).
No sé aún cuantas entradas ocupará ni como lo dividiré. En esta primera entrada me centraré en tratar de explicarqué es la radiactividad y por qué se produce. Antes de leer esto, un par de aclaraciones: no es el objetivo de esta entrada explicar muy profundamente determinados fenómenos que se producen durante las desintegraciones radioactivas de los elementos, sino dar una visión general. Tampoco es el objetivo de esta serie dar argumentaciones a favor o en contra del uso de la energía nuclear con finalidades civiles.
La principal finalidad de esta entrada es que el público comprenda que la radioactividad es un fenómeno natural y que continuamente estamos expuestos a radiación; cuando te comes una patata de un supermercado, ésta ha sido irradiada previamente, igual que un yogur. Cuando estás en un hotel con un detector de humo, allí hay una fuente de radioactividad, igual que cuando conduces por una carretera en ella se usó una fuente radioactiva para saber su espesor.
Al igual que pasa con ciertas moléculas, no todos los átomos son “estables”; así, existen isotópos en los cuales pueden darse, de forma estocástica, fenómenos físicos que permiten al átomo tener un menor nivel energético. Como casi todo, el núcleo del átomo también tiende al menor nivel energético posible. Es algo similar a lo que pasa cuando tenemos un electrón excitado en un átomo, tiende a pasar a un estado de menor energía liberando en el proceso un fotón. Pues en el caso de la radioactividad liberarán un fotón, un electrón, núcleos de Helio, etc… simplemente para tender a un menor estado energético.
Es importante tener presente que de los 1700 isótopos que se conocen sólo 260 son estables. El isótopo mas estable que existe es el Hierro-56, debido a que su núcleo tiene la mas alta energía de enlace por nucleón[1]. Es un elemento tremendamente especial, ya que es el elemento más pesado que se produce exotérmicamente por fusión, y el más ligero que se produce a través de una fisión.
Dicho mal y rápido, podemos partir o unir todos los demás núcleos para obtener energía salvo del Hierro. Información gratuita: El elemento mas ligero sin isotópos estables es el Tecnecio.
Estabilidad de los isótopos dependiendo de su número másico y su número atómico. Crédito: Wikipedia.
Pero volvamos a la estabilidad: si ponemos en un gráfico todos los isotopos que existen dependiendo de su número atómico y su número másico, obtenemos esta gráfica. En ella podemos comprobar que la mayor estabilidad no se produce cuando el numero de protones y neutrones es similar, sino que cuanto mas pesado es el átomo mas neutrones hacen falta para contrarrestar las fuerzas repulsoras de tanta carga positiva; sin embargo, existe una tendencia y los que se alejan de esta tendencia son más inestables, los que están en el centro son más estables.
Hablemos de los procesos que permiten al átomo aumentar la energía de enlace por nucleón de su núcleo. Hablaremos de dos tipos:
Desintegración radioactiva estructural: Es aquella en la que el átomo varía su estructura interna para ser más estable. Dentro de ella hay varios tipos:
Desintegración radioactiva alfa: En la desintegración alfa, un elemento pesado ( el Uranio-238, por ejemplo) libera un núcleo de helio para ser más ligero y estar más cerca de la estabilidad, dando como resultado un isotopo con un número atómico dos veces menor y uno másico cuatro veces menor (en nuestro ejemplo anterior, obtendríamos Torio-234 + He-4).
Desintegración Beta+: Se trata de un tipo de desintegración en la que un protón del núcleo atómico se convertirá en neutrón, como consecuencia se libera un positrón (que se lleva la carga positiva y parte de la energía) y un neutrino. Es altamente probable que el positrón colisione con algún electrón cercano, anulándose ambos y liberándose dos fotones con la energía de un electrón cada uno. Ejemplo: Potasio-40 —-> Argón-40.
Desintegración Beta-: Similar al proceso anterior salvo que sucede al revés, un neutrón se convierte en protón liberando un electrón (que se lleva la carga negativa) y un antineutrino (el antineutrino aparece por la necesidad de conservación del movimiento lineal). Ejemplo: Cobalto-60 —> Níquel-60.
-Captura electrónica: En la captura electrónica, un protón del núcleo captura un eletrón de las capas mas internas para convertirse en neutrón (necesita anular las cargas). Se libera un neutrino. Luego también veremos que se liberan fotones con energías características de cada elemento, que provienen de la recolocación de los electrones en la corteza del átomo. Daos cuenta de que la captura electrónica y la desintegración Beta+ son producen el mismo efecto en el núcleo, por esta razón las llamaremos competitivas. Ejemplo: Hierro-55 ——> Manganeso-55.
Fisión: En esta desintegración radioactiva, un átomo se divide en dos átomos más o menos la mitad de pequeños, liberando dos neutrones con cantidad de energía. Como en las anteriores desintegraciones, el cuándo se producirá es una cosa que depende totalmente del azar. Sin embargo, se puede provocar si un netutrón colisiona con un átomo. Y puesto que la reacción libera dos neutrones, esto permite las reacciones en cadena (ya que cada átomo puede activar a dos más, que a su vez activaran a dos más cada uno).
Desintegración radioactiva no estructural: Existe otro tipo de fenómeno que resulta de la emisión de radiación por parte del núcleo de un átomo. Se trata de ladesintegración radioactiva no estructural: en muchas de las reaciones de desintegración radioactiva estructural, es muy posible que uno de los nucleones quede en un estado excitado (similar a los electrones en los orbitales atómicos, excepto que con mucha mas energía). Este nucleón, para volver a un estado no excitado de energía, libera un fotón muy energético que es lo que se conoce como radiación gamma.
No explico la fusión porque no es un proceso de desintegración radioactiva. El objetivo de esta primera entrada es que conozcáis los mecanismos a través de los cuales los isotopos consiguen ser más estables. Es importante tener presente que es más probable que los elementos mas pesados se desintegren según el proceso alfa que el beta, ya que al perder 4 nucleones se avanza mas rápidamente hacia la estabilidad.
Radiaciones ionizantes y no ionizantes. Crédito Wikipedia.
Ahora trataré de explicar su peligrosidad. Para entender por qué la radiación es peligrosa, debemos comprender como interacciona con la materia. Hay dos tipos de radiación: la no ionizante y la ionizante. La radiación ionizante es la peligrosa porque interactúa con la materia, la no ionizante, digamos que es “invisible” a la materia ya que como mucho puede excitar algún electrón de las capas mas externas de los átomos.
Pero, ¿qué significa “ionizar”? Muy bien, imaginaos un electrón “a toda leche” aproximándose a una placa de Tungsteno; el electrón ira rebotando en todo lo que encuentre por el camino hasta perder toda su “inercia” (energía) y detenerse completamente. Pero si es radiación ionizante, es decir si tiene la suficiente “inercia”, cada vez que choque contra otro electrón para frenarse lo arrancará de su órbita, dejando un ión donde antes existía un átomo neutro. Un solo electrón puede producir cientos de miles de ionizaciones antes de frenarse.
Ahora imaginemos que, en lugar de tener una placa de Tungsteno en un laboratorio, estamos nosotros con nuestras preciosas tiroides expuestas al Yodo-131 (El Yodo en general se acumula en las tiroides). El Yodo-131 es un emisor Beta, esto significa que libera electrones a saco en nuestras tiroides. Cuando estos electrones impacten continuamente contra nuestras células ionizaran átomos que forman proteínas, cadenas de nucleotidos, etc. rompiéndolos y muy probablemente terminaremos con cáncer de tiroides.
Ahora que comprendemos los mecanismos por los cuales la radiación ionizante nos daña, trataremos de razonar cual y por qué es las más dañina. ¿Que radiación suele ser la que tiene mayor “inercia”? La radiación alfa (tranquilos, vuestra intuición no os falla, la gamma es la mas peligrosa). Sin embargo, al ser núcleos de Helio se trata de una partícula muy, muy grande (comparada con un electrón) que interacionará rápidamente con toda la materia causando muchas ionizaciones en muy poco espacio. Si ponemos una hoja de papel entre nosotros y una fuente emisora alfa estaremos 100% protegidos, porque el papel frenara toda la radiación que no haya frenado ya el aire.
Eso sí, la radiación alfa es muy muy peligrosa cuando la ingerimos o nos vemos contaminados con ella, ya que produce mucho daño en una zona súper-localizada. Laradiación beta es un poco más peligrosa, pues al ser una partícula mas pequeña es más difícil que colisione contra algo y por lo tanto que se frene antes de chocar contra nuestro cuerpo. Este mismo echo es el responsable de que no sólo nos dañe la piel, sino que algunos electrones lleguen hasta los pulmones, corazón, etc…
Así pues, la radiación gamma es la mas peligrosa de todas, puesto que al ser un fotón, por muy energético que sea tiene una baja probabilidad de interactuar con la materia, por lo tanto el daño que haga estará muy repartido, y esto es malo para nosotros porque nos va a costar “blindarnos” de sus efectos. Como comenté antes, con un papel es suficiente par detener la radiación alfa; para la Beta necesitaremos 1-5cm de aluminio, y para la gamma varios centímetros de plomo.
También es importante destacar que, al igual que comenté antes, su peligrosidad depende de si la fuente esta en nuestro cuerpo o fuera de él. Invirtiéndose el orden de peligrosidad en caso de estar contaminados (se entiende por irradiado haber estado expuesto a radiación y por contaminado tener una fuente dentro del cuerpo).
Soy plenamente consciente que esta entrada hay muchas cosas que tratan por encima, como por ejemplo, ¿cómo puede un protón convertirse en neutrón? (ya que no tienen ni la misma masa ni la misma carga), pero tenéis que ser conscientes que ese tema es de otro campo de la física (Física de partículas) y que no es el objetivo de esta entrada explicarlo. Os puedo recomendar que os leáis Cuántica sin fórmulas del profesor Pedro, puesto que el efecto túnel es la clave teórica para explicar muchas de estas desintegraciones y porqué se producen al azar, pero como he repetido la idea es transmitir conocimientos generales de la radioactividad. Tenéis a vuestra disposición los comentarios y el foro para preguntar y felizmente responderé a las preguntas de las cuales conozca las respuestas. Si te ha gustado esta entrada y tienes mas sed de conocimiento, lee la siguiente entrada, Radioactividad (II): Un mundo radioactivo.