REPETITION

Repeating consistent frameworks can contribute to simple presentation.


Two of the most important qualities of scientific communication are validity (accurately expressing the ideas that the author seeks to express) and clarity (ability for readers to correctly interpret the meaning of the written or spoken communication). Therefore, communication strategies that support valid, clear communication are helpful for science even if they involve using a communication style that may be discouraged in other fields.


For example, repetition is often thought to be something to avoid. However, repetition is actually a deliberate and powerful strategy for improving the clarity of scientific communication (Silyn-Roberts, 2012). The principle of parallel construction can add emphasis through repetition (Strunk and White, 2000). However, another important benefit of repetition is that repetition can reduce the amount of information that audiences must process to understand communication.


When readers are confronted with a new framework for presenting information, readers must devote time and effort to understanding the structure of the framework in addition to understanding the content of the presentation. Therefore, repeating the SAME framework within a presentation or section of a presentation can reduce the amount of time and effort that audiences must devote to understanding the presentation, and increase the audience's ability to understand content.


Repeated frameworks can be simple. For example, the methods used for experimental studies can be thought of as a set of required steps. However, there are usually many possible approaches available to complete each step of an experiment. Therefore, each experimental step presents a problem: what is the best way to perform the required step?


A simple three-part framework could be useful to explain the methods of an experimental study. First, identify the goal that the methods must achieve. Second, identify one procedure necessary to accomplish the goal. Third, explain the rationale (reason) for choosing the procedure instead of alternatives. Achieving goals may involve several procedures. The simple procedure-rationale framework can be repeated for several procedures. If problems emerge when implementing a procedure, then iterate the framework: identify the sub-problem (1a), solution, and rationale.


Once the methods necessary to achieve a goal have been explained, the framework can be iterated to explain the procedures necessary to achieve a second goal. Graphically, the framework could be represented using a diagram:

Repeated frameworks can also be useful for other aspects of scientific presentation. For example, the conclusions for measurable hypotheses could use a separate three-part framework (e.g. a syllogism). First, clearly state the hypothesis in full. Second, present and refer to the evidence (e.g. results of statistical tests, illustrated with figures and tables) that correspond to the predictions of the hypothesis. Finally, based on strong reasoning (e.g. modus tollens or equivalent), explain the conclusion that most reasonably follows.

Repetition can strengthen communication at many levels of organization.


One ubiquitous guideline for writing (that is often not followed) is to use topic sentences: sentences at the beginning of a paragraph that provide the theme of the paragraph. For scientific writing, the theme of most paragraphs is the conclusion of a reasoned argument. However, conclusions of arguments typically appear at the end of an argument (i.e. at the end of a paragraph). Is it acceptable to repeat a conclusion as a topic sentence and at the end of a paragraph?


"Book-ending" a paragraph with its conclusion is a form of repetition that can contribute to clear arguments! The topic sentence can provide a "preview" to help readers understand the main argument of the paragraph. The conclusion is then supported both by the evidence within the paragraph AND by the emphasis provided by repetition.


Repetition is only one form of redundancy.


"Redundancy" can be defined as creating several different methods to achieve the same goal. For example, a hospital may primarily rely on electricity from the public electrical grid during normal operation. However, hospitals also have several redundant sources of electricity (e.g. generators or batteries) available in case the public electrical grid loses power. Redundancy can therefore be important when designing important systems or processes.


In the context of communication, redundancy often carries a negative connotation: as unnecessary and/or boring. However, redundancy can be an important strategy for scientific communication (Dumont, 2009). For example, redundancy can involve using several complimentary ways of conveying the same important information. Text, pictures, and even the frameworks used to structure communication can all contribute to emphasizing important information using redundancy. Presenting information in ways that are compatible with each other and use redundancy to support the same conclusions can potentially facilitate understanding and remembering (Packard and Goodman, 2013). Therefore, repetition and other forms of redundancy can help emphasize and communicate important information.

Creating and repeating simple frameworks can help simplify presentations. Repeating frameworks reduces the number of frameworks that audiences must understand, and allows audiences to focus on understanding content.