WHAT ARE HYPOTHESES?

Hypotheses are testable explanations and predictions.


Many people think of a hypothesis as "an educated guess" (Moriarty, 1997). Is "an educated guess" a good definition of a hypothesis?


An "educated guess" is actually not a bad definition for a hypothesis -- simply an incomplete definition.


In practice, hypotheses are not really "guesses," but hypotheses are tentative statements. We don't know if hypotheses are true or not. Therefore, one of the most important aspects of hypotheses is that we must be able to determine whether hypotheses are true or not true: hypotheses must be testable.


For example, a testable hypothesis could be:


"If I write my paper a week before the deadline and discuss it with my instructor before revision, I will get an A on the paper."


The hypothesis is specific enough to make a testable prediction. However, the hypothesis is tentative: discussing a paper with the instructor is not a guarantee of an A (although still a good strategy to get a higher grade).


An example of a statement that is NOT testable would be:


"I was a falcon in my past life."


Because there is no way to measure anything about past lives, we cannot test a statement about past lives. Therefore, the statement cannot be a hypothesis.


DEFINITION: A useful one-sentence definition of a hypothesis is: "A tentative, specific explanation or prediction of a phenomenon or an observation that can be rejected by experimental data."


Expressing a definition using only one sentence is concise. However, the definition of a hypothesis has the problem that the sentence expresses two ideas (explanation and prediction), which can be confusing (Strode, 2015). Therefore, it is useful to analyze (break apart) the idea of a hypothesis by defining two separate terms:


DEFINITION: A "General Hypothesis" is a tentative, specific explanation of a phenomenon that can be rejected by experimental data."


DEFINITION: A "Measurable Hypothesis" is a tentative, specific prediction that can be rejected by experimental data."


The hypothesis "If I write my paper a week before the deadline and discuss it with my instructor before revision, I will get an A on the paper" could be an example of a Measurable Hypothesis that emerges as a prediction of a General Hypothesis such as "Instructor feedback contributes to effective revision and leads to higher-quality writing."


Given our definitions, it will be useful to explore General and Measurable hypotheses in more detail.

In summary, we can distinguish between two different types of hypotheses: “General” hypotheses (scientific models) and “Measurable” hypotheses (testable predictions that emerge from the scientific models). Scientific models explain phenomena in ways that generalize to many different situations. General scientific models can then lead to many different predictions. Predictions are most useful if the predictions are measurable – i.e. expressed in terms of measurements that are possible to make.

However, there are other types of hypotheses also. For example, statistics is usually necessary to compare the results of actual measurements to the predictions of Measurable Hypotheses, i.e. to “test” the Measurable Hypotheses. However, it is important to test predictions using logical reasoning that is both valid and sound. Therefore, Measurable hypotheses commonly take specific forms (e.g. "null" hypotheses) when used for statistical tests.

We could reasonably call the Measurable Hypotheses tested by statistics "Statistical" hypotheses. A thorough discussion of statistical hypotheses is beyond the scope of our discussion. However, it is important to note that the best ways to test hypotheses using statistics is an area of active scientific debate.