Now we reached the first major milestone beyond blasphemorgulus, namely blasphemorgulcross! Fast-growing ordinal levels are shown right next to the definition of number in the particular name.
Starting from this point, the intermediate names are slightly different from the previous sneak peak.
(503) blasphemorgulcross = E100#{&}##100 [φ(1, 0, 1, 0)]
= E100#{&}#>#{&}#>#{&}#>... ... ... ... ... ...>#{&}#>#{&}#>#{&}#100 with 100 #{&}#'s
(comparable to Saibian's agoraphobia, defined as E100#*^#100 using Saibian's ad hoc hyper-hyper-extended Cascading-E notation)
(504) grand blasphemorgulcross = E100#{&}##100 [φ(1, 0, 1, 0)]
(505) grangol-carta-blasphemorgulcross = E100#{&}##100#100 [φ(1, 0, 1, 0) + 1]
(506) blasphemorgulcross-by-deuteron = E100#{&}##100#{&}##100 [φ(1, 0, 1, 0)·2]
(507) blasphemorgulcross-by-hyperion = E100#{&}##*#100 [φ(1, 0, 1, 0)·ω]
(508) deutero-blasphemorgulcross = E100#{&}##*#{&}##100 [φ(1, 0, 1, 0)^2]
(509) blasphemorgulcruxifact = E100(#{&}##)^#100 [φ(1, 0, 1, 0)^ω]
(510) dutetrated-blasphemorgulcross = E100(#{&}##)^(#{&}##)100 [φ(1, 0, 1, 0)^φ(1, 0, 1, 0)]
(511) terrible blasphemorgulcross = E100(#{&}##)^^#100 [ε(φ(1, 0, 1, 0) + 1)]
(512) terrisquared blasphemorgulcross = E100(#{&}##)^^##100 [ζ(φ(1, 0, 1, 0) + 1)]
(513) territoped blasphemorgulcross = E100(#{&}##)^^#^#100 [φ(ω, φ(1, 0, 1, 0) + 1)]
(514) dupentated blasphemorgulcross = E100(#{&}##)^^(#{&}##)100 [φ(φ(1, 0, 1, 0), 1)]
(515) horrible blasphemorgulcross = E100(#{&}##)^^^#100 [Γ(φ(1, 0, 1, 0) + 1)]
(516) horrendous blasphemorgulcross = E100(#{&}##)^^^^#100 [φ(2, 0, φ(1, 0, 1, 0) + 1)]
(517) grievous blasphemorgulcross = E100(#{&}##){#}#100 [φ(ω, 0, φ(1, 0, 1, 0) + 1)]
(518) blasphemorgulcruxinumus blasphemorgulcross = E100(#{&}##){#{&}##}#100 [φ(φ(1, 0, 1, 0), 0, 1)]
(519) blasphemous blasphemorgulcross = E100(#{&}##){&}#100 [φ(1, 0, 0, φ(1, 0, 1, 0) + 1)]
(520) tweilasphemous blasphemorgulcross = E100((#{&}##){&}#){&}#100 [φ(1, 0, 0, φ(1, 0, 1, 0) + 2)]
(521) blasphemorguliteratous blasphemorgulcross = E100(#{&}##){&}#>#100 [φ(1, 0, 0, φ(1, 0, 1, 0) + ω)]
(522) dustaculated-blasphemorguliter-blasphemorgulcross = E100(#{&}##){&}#>(#{&}##){&}#100 [φ(1, 0, 0, φ(1, 0, 0, φ(1, 0, 1, 0) + 1))]
(523) tristaculated-blasphemorguliter-blasphemorgulcross = E100(#{&}##){&}#>(#{&}##){&}#>(#{&}##){&}#100 [φ(1, 0, 0, φ(1, 0, 0, φ(1, 0, 0, φ(1, 0, 1, 0) + 1)))]
(524) tweilasphemorgulcross = E100(#{&}##){&}##100 [φ(1, 0, 1, 1)]
(*comparable to E100#*^##100 in Saibian's ad hoc hyper-hyper-extended Cascading-E notation)
(525) blasphemous tweilasphemorgulcross = E100((#{&}##){&}##){&}#100 [φ(1, 0, 0, φ(1, 0, 1, 1) + 1)]
(526) frielasphemorgulcross = E100((#{&}##){&}##){&}##100 [φ(1, 0, 1, 2)]
(*comparable to E100#*^###100 in Saibian's ad hoc hyper-hyper-extended Cascading-E notation)
(527) fiorilasphemorgulcross = E100(((#{&}##){&}##){&}##){&}##100 [φ(1, 0, 1, 3)]
(*comparable to E100#*^####100 in Saibian's ad hoc hyper-hyper-extended Cascading-E notation)
(528) finnasphemorgulcross = E100((((#{&}##){&}##){&}##){&}##){&}##100 [φ(1, 0, 1, 4)]
(529) sexasphemorgulcross = E100(((((#{&}##){&}##){&}##){&}##){&}##){&}##100 = E100#{&}##>#6 [φ(1, 0, 1, 5)]
(530) sjournalasphemorgulcross = E100#{&}##>#7 [φ(1, 0, 1, 6)]
(531) attalasphemorgulcross = E100#{&}##>#8 [φ(1, 0, 1, 7)]
(532) neiulasphemorgulcross = E100#{&}##>#9 [φ(1, 0, 1, 8)]
(533) tenasphemorgulcross = E100#{&}##>#10 [φ(1, 0, 1, 9)]
(534) blasphemorgulitercross = E100#{&}##>#100 [φ(1, 0, 1, ω)]
(*comparable to E100#*^#^#100 in Saibian's ad hoc hyper-hyper-extended Cascading-E notation)
(535) blasphemous blasphemorgulitercross = E100(#{&}##>#){&}#100 [φ(1, 0, 0, φ(1, 0, 1, ω) + 1)]
(536) blasphemorgulcruxiated blasphemorgulitercross = E100(#{&}##>#){&}##100 [φ(1, 0, 1, ω + 1)]
(537) blasphemorgulditercross = E100#{&}##>(#+#)100 [φ(1, 0, 1, ω·2)]
(538) blasphemorgultritercross = E100#{&}##>(#+#+#)100 [φ(1, 0, 1, ω·3)]
(539) blasphemorgulgriditercross = E100#{&}##>##100 [φ(1, 0, 1, ω^2)]
(540) blasphemorguldugriditercross = E100#{&}##>(##+##)100 [φ(1, 0, 1, ω^2·2)]
(541) blasphemorgulcubiculcross = E100#{&}##>###100 [φ(1, 0, 1, ω^3)]
(542) blasphemorgulquarticulcross = E100#{&}##>####100 [φ(1, 0, 1, ω^4)]
(543) blasphemorgulspatialcross = E100#{&}##>#^#100 [φ(1, 0, 1, ω^ω)]
(544) blasphemorgulgridgathialcross = E100#{&}##>#^##100 [φ(1, 0, 1, ω^ω^2)]
(545) blasphemorgulsuperspatialcross = E100#{&}##>#^##100 [φ(1, 0, 1, ω^ω^ω)]
(546) blasphemorgultrimensionalcross = E100#{&}##>#^##100 [φ(1, 0, 1, ω^ω^ω^ω)]
(547) tethrathoth-turreted-blasphemorgulcross = E100#{&}##>#^^#100 [φ(1, 0, 1, ε0)]
(*comparable to E100#*^#^^#100 in Saibian's ad hoc hyper-hyper-extended Cascading-E notation)
(548) territethrathoth-turreted-blasphemorgulcross = E100#{&}##>(#^^#)^^#100 [φ(1, 0, 1, ε1)]
(549) tethriterator-turreted-blasphemorgulcross = E100#{&}##>#^^#>#100 [φ(1, 0, 1, ε(ω))]
(550) tethracross-turreted-blasphemorgulcross = E100#{&}##>#^^##100 [φ(1, 0, 1, ζ0)]
(551) tethracubor-turreted-blasphemorgulcross = E100#{&}##>#^^###100 [φ(1, 0, 1, η0)]
(552) tethratope-turreted-blasphemorgulcross = E100#{&}##>#^^#^#100 [φ(1, 0, 1, φ(ω, 0))]
(553) tethrarxitri-turreted-blasphemorgulcross = E100#{&}##>#^^#^^#100 [φ(1, 0, 1, φ(ε0, 0))]
(554) pentacthulhum-turreted-blasphemorgulcross = E100#{&}##>#^^^#100 [φ(1, 0, 1, Γ0)]
(555) hexacthulhum-turreted-blasphemorgulcross = E100#{&}##>#^^^^#100 [φ(1, 0, 1, φ(2, 0, 0))]
(556) godsgodgulus-turreted-blasphemorgulcross = E100#{&}##>#{#}#100 [φ(1, 0, 1, φ(ω, 0, 0))]
(557) godsgodgul-centurion-turreted-blasphemorgulcross = E100#{&}##>#{#{#}#}#100 [φ(1, 0, 1, φ(φ(ω, 0, 0), 0, 0))]
(558) blasphemorgulus-turreted-blasphemorgulcross = E100#{&}##>#{&}#100 [φ(1, 0, 1, φ(1, 0, 0, 0)]
(559) dustaculated-blasphemorgulcross = E100#{&}##>#{&}##100 [φ(1, 0, 1, φ(1, 0, 1, 0)]
(560) dustaculated-blasphemorgulitercross = E100#{&}##>#{&}##>#100 [φ(1, 0, 1, φ(1, 0, 1, ω)]
(561) tristaculated-blasphemorgulcross = E100#{&}##>#{&}##>#{&}##100 [φ(1, 0, 1, φ(1, 0, 1, φ(1, 0, 1, 0))]
(562) tetrastaculated-blasphemorgulcross = E100#{&}##>#{&}##>#{&}##>#{&}##100 [φ(1, 0, 1, φ(1, 0, 1, φ(1, 0, 1, φ(1, 0, 1, 0)))]
(563) pentastaculated-blasphemorgulcross = E100#{&}##>#{&}##>#{&}##>#{&}##>#{&}##100 = E100#{&}###5
[φ(1, 0, 1, φ(1, 0, 1, φ(1, 0, 1, φ(1, 0, 1, φ(1, 0, 1, 0))))]
(564) hexastaculated-blasphemorgulcross = E100#{&}##>#{&}##>#{&}##>#{&}##>#{&}##>#{&}##100 = E100#{&}###6
[φ(1, 0, 1, φ(1, 0, 1, φ(1, 0, 1, φ(1, 0, 1, φ(1, 0, 1, φ(1, 0, 1, 0)))))]
(565) heptastaculated-blasphemorgulcross = E100#{&}###7 [φ(1, 0, 2, 0)[7]]
(566) ogdastaculated-blasphemorgulcross = E100#{&}###8 [φ(1, 0, 2, 0)[8]]
(567) ennastaculated-blasphemorgulcross = E100#{&}###9 [φ(1, 0, 2, 0)[9]]
(568) dekastaculated-blasphemorgulcross = E100#{&}###10 [φ(1, 0, 2, 0)[10]]
...
(569) blasphemorgulcubor = E100#{&}###100 [φ(1, 0, 2, 0)]
(comparable to astralthrathoth, defined as E100#*^^#100 using Saibian's ad hoc hyper-hyper-extended Cascading-E notation)
(570) terrible blasphemorgulcubor = E100(#{&}###)^^#100 [ε(φ(1, 0, 2, 0) + 1)]
(571) terrisquared blasphemorgulcubor = E100(#{&}###)^^##100 [ζ(φ(1, 0, 2, 0) + 1)]
(572) horrible blasphemorgulcubor = E100(#{&}###)^^^#100 [Γ(φ(1, 0, 2, 0) + 1)]
(573) blasphemous blasphemorgulcubor = E100(#{&}###){&}#100 [φ(1, 0, 0, φ(1, 0, 2, 0) + 1)]
(574) blasphemosquared blasphemorgulcubor = E100(#{&}###){&}##100 [φ(1, 0, 1, φ(1, 0, 2, 0) + 1)]
(575) tweilasphemorgulcubor = E100(#{&}###){&}###100 [φ(1, 0, 2, 1)]
(576) frielasphemorgulcubor = E100((#{&}###){&}###){&}###100 [φ(1, 0, 2, 2)]
(577) blasphemorgulitercubor = E100#{&}###>#100 [φ(1, 0, 2, ω)]
(578) blasphemorgulus-turreted-blasphemorgulcubor = E100#{&}###>#{&}#100 [φ(1, 0, 2, φ(1, 0, 0, 0))]
(579) blasphemorgulcross-turreted-blasphemorgulcubor = E100#{&}###>#{&}##100 [φ(1, 0, 2, φ(1, 0, 1, 0))]
(580) dustaculated-blasphemorgulcubor = E100#{&}###>#{&}###100 [φ(1, 0, 2, φ(1, 0, 2, 0))]
(581) tristaculated-blasphemorgulcubor = E100#{&}###>#{&}###>#{&}###100 [φ(1, 0, 2, φ(1, 0, 2, φ(1, 0, 2, 0)))]
(582) blasphemorgulteron = E100#{&}####100 [φ(1, 0, 3, 0) ~ #*^^##]
(583) tweilasphemorgulteron = E100(#{&}####){&}####100 [φ(1, 0, 3, 1)]
(584) blasphemorguliterteron = E100#{&}####100 [φ(1, 0, 3, ω)]
(585) dustaculated-blasphemorgulteron = E100#{&}####>#{&}####100 [φ(1, 0, 3, φ(1, 0, 3, 0))]
(586) blasphemorgulpeton = E100#{&}#####100 [φ(1, 0, 4, 0) ~ #*^^###]
(587) blasphemorguliterpeton = E100#{&}#####>#100 [φ(1, 0, 4, ω)]
(588) blasphemorgulhexon = E100#{&}######100 [φ(1, 0, 5, 0)]
(589) blasphemorgulhepton = E100#{&}#######100 [φ(1, 0, 6, 0)]
(590) blasphemorgulogdon = E100#{&}########100 [φ(1, 0, 7, 0)]
(591) blasphemorgulennon = E100#{&}#########100 [φ(1, 0, 8, 0)]
(592) blasphemorguldekon = E100#{&}##########100 [φ(1, 0, 9, 0)]
...
(593) blasphemorgultope = E100#{&}#^#100 [φ(1, 0, ω, 0) ~ #*^^#^#]
(594) tweilasphemorgultope = E100(#{&}#^#){&}#^#100 [φ(1, 0, ω, 1)]
(595) blasphemorgulitertope = E100#{&}(#^#)>#100 [φ(1, 0, ω, ω)]
(595) dustaculated-blasphemorgultope = E100#{&}(#^#)>#{&}(#^#)100 [φ(1, 0, ω, φ(1, 0, ω, 0))]
(596) blasphemorgultopothoth = E100#{&}(#^#*#)100 [φ(1, 0, ω + 1, 0)]
(597) blasphemorgultopocross = E100#{&}(#^#*##)100 [φ(1, 0, ω + 2, 0)]
(598) blasphemorgultopocubor = E100#{&}(#^#*###)100 [φ(1, 0, ω + 3, 0)]
(599) blasphemorgultopodeus = E100#{&}(#^#*#^#)100 [φ(1, 0, ω·2, 0)]
(600) blasphemorgultopodeusithoth = E100#{&}(#^#*#^#*#)100 [φ(1, 0, ω·2 + 1, 0)]
(601) blasphemorgultopotruce = E100#{&}(#^#*#^#*#^#)100 [φ(1, 0, ω·3, 0)]
(602) blasphemorgultopoquad = E100#{&}(#^#*#^#*#^#)100 [φ(1, 0, ω·4, 0)]
(603) blasphemorgullattitope = E100#{&}#^##100 [φ(1, 0, ω^2, 0)]
(604) blasphemorgullattitopodeus = E100#{&}(#^##*#^##)100 [φ(1, 0, ω^2·2, 0)]
(605) blasphemorgulcubitope = E100#{&}#^###100 [φ(1, 0, ω^3, 0)]
(606) blasphemorgulquarticutope = E100#{&}#^####100 [φ(1, 0, ω^4, 0)]
(607) blasphemorgulo-godgathor = E100#{&}#^#^#100 [φ(1, 0, ω^ω, 0)]
(608) blasphemorgulo-gralgathor = E100#{&}#^#^##100 [φ(1, 0, ω^ω^2, 0)]
(609) blasphemorgulo-godtothol = E100#{&}#^#^#^#100 [φ(1, 0, ω^ω^ω, 0)]
(610) blasphemorgulo-godtertol = E100#{&}#^#^#^#^#100 [φ(1, 0, ω^ω^ω^ω, 0)]
(611) blasphemorgulo-tethrathoth = E100#{&}#^^#100 [φ(1, 0, ε0, 0) ~ #*^^#^^#]
(612) blasphemorgulo-tethracross = E100#{&}#^^##100 [φ(1, 0, ζ0, 0) ~ #*^^#^^##]
(613) blasphemorgulo-pentacthulhum = E100#{&}#^^^#100 [φ(1, 0, Γ0, 0) ~ #*^^#^^^#]
(614) blasphemorgulo-hexacthulhum = E100#{&}#^^^^#100 [φ(1, 0, φ(2, 0, 0), 0) ~ #*^^#^^^^#]
(615) blasphemorgulo-godsgodgulus = E100#{&}#{#}#100 [φ(1, 0, φ(ω, 0, 0), 0) ~ #*^^#{#}#]
(616) blasphemorgulo-godsgodgul-centurion = E100#{&}#{#{#}#}#100 [φ(1, 0, φ(φ(ω, 0, 0), 0, 0), 0) ~ #*^^#{#{#}#}#]
...
(617) blasphemorgularxitri = E100#{&}#{&}#100 [φ(1, 0, φ(1, 0, 0, 0), 0) ~ #*^^{#,#,1,2}]
(618) blasphemorgulcruxi-arxitri = E100#{&}#{&}##100 [φ(1, 0, φ(1, 0, 1, 0), 0) ~ #*^^{#,#+1,1,2}]
(619) blasphemorgultoparxitri = E100#{&}#{&}#^#100 [φ(1, 0, φ(1, 0, ω, 0), 0) ~ #*^^#*^^#^#]
(620) blasphemorgularxitet = E100#{&}#{&}#{&}#100 [φ(1, 0, φ(1, 0, φ(1, 0, 0, 0), 0), 0)]
(621) blasphemorgularxipent = E100#{&}#{&}#{&}#{&}#100 [φ(1, 0, φ(1, 0, φ(1, 0, φ(1, 0, 0, 0), 0), 0), 0)]
(622) blasphemorgularxihex = E100#{&}#{&}#{&}#{&}#{&}#100 = E100#{&+1}#6 [φ(1, 0, φ(1, 0, φ(1, 0, φ(1, 0, φ(1, 0, 0, 0), 0), 0), 0), 0)]
(623) blasphemorgularxihept = E100#{&+1}#7 [φ(1, 1, 0, 0)[7]]
(624) blasphemorgularxi-ogd = E100#{&+1}#8 [φ(1, 1, 0, 0)[8]]
(625) blasphemorgularxi-enn = E100#{&+1}#9 [φ(1, 1, 0, 0)[9]]
(626) blasphemorgularxideck = E100#{&+1}#10 [φ(1, 1, 0, 0)[10]]
Then...
(627) blasphemorgulhenus = E100#{&+1}#100 [φ(1, 1, 0, 0) ~ #*^^^#]
(also called (628) greesblasphemorgulus)
(629) grand blasphemorgulhenus = E100#{&+1}#100#2 [φ(1, 1, 0, 0)]
(630) grangol-carta-blasphemorgulhenus = E100#{&+1}#100 [φ(1, 1, 0, 0) + 1]
(631) blasphemorgulhenus-by-deuteron = E100#{&+1}#100#{&+1}#100 [φ(1, 1, 0, 0)·2]
(632) blasphemorgulhenus-by-hyperion = E100#{&+1}#*#100 [φ(1, 1, 0, 0)·ω]
(633) deutero-blasphemorgulhenus = E100#{&+1}#*#100 [φ(1, 1, 0, 0)^2]
(634) blasphemorgulhenifact = E100(#{&+1}#)^#100 [φ(1, 1, 0, 0)^ω]
(635) dutetrated-blasphemorgulhenus = E100(#{&+1}#)^(#{&+1}#)100 [φ(1, 1, 0, 0)^φ(1, 1, 0, 0)]
(636) terrible blasphemorgulhenus = E100(#{&+1}#)^^#100 [ε(φ(1, 1, 0, 0) + 1)]
(637) terrisquared blasphemorgulhenus = E100(#{&+1}#)^^##100 [ζ(φ(1, 1, 0, 0) + 1)]
(638) horrible blasphemorgulhenus = E100(#{&+1}#)^^^#100 [Γ(φ(1, 1, 0, 0) + 1)]
(639) grievous blasphemorgulhenus = E100(#{&+1}#){#}#100 [φ(ω, 0, φ(1, 1, 0, 0) + 1)]
(640) blasphemorgulhenumus blasphemorgulhenus = E100(#{&+1}#){#{&+1}#}#100 [φ(φ(1, 1, 0, 0), 0, 1)]
(641) blasphemous blasphemorgulhenus = E100(#{&+1}#){&}#100 [φ(1, 0, 0, φ(1, 1, 0, 0) + 1)]
(642) blasphemosquared blasphemorgulhenus = E100(#{&+1}#){&}##100 [φ(1, 0, 1, φ(1, 1, 0, 0) + 1)]
(643) blasphemotoped blasphemorgulhenus = E100(#{&+1}#){&}#^#100 [φ(1, 0, ω, φ(1, 1, 0, 0) + 1)]
(644) dublasphemogulhenated blasphemorgulhenus = E100(#{&+1}#){&}(#{&+1}#)100 [φ(1, 0, φ(1, 1, 0, 0), 1)]
(645) blasphemorgulhenaldubbus = E100(#{&+1}#){& + 1}#100 [φ(1, 1, 0, 1)]
(also called (646) tweilasphemorgulhenus)
(647) blasphemorgulhenaltribbus = E100((#{&+1}#){& + 1}#){& + 1}#100 [φ(1, 1, 0, 2)]
(also called (648) frielasphemorgulhenus)
(649) blasphemorgulhenaliterator = E100#{&+1}#>#100 [φ(1, 1, 0, ω)]
(650) dustaculated-blasphemorgulhenus = E100#{&+1}#>#{&+1}#100 [φ(1, 1, 0, φ(1, 1, 0, 0))]
(651) tristaculated-blasphemorgulhenus = E100#{&+1}#>#{&+1}#>#{&+1}#100 [φ(1, 1, 0, φ(1, 1, 0, φ(1, 1, 0, 0)))]
...
(652) blasphemorgulhenicross = E100#{&+1}##100 [φ(1, 1, 1, 0)]
(*formerly blasphemorgulhenuecross)
(653) blasphemorgulhenalitercross = E100#{&+1}##>#100 [φ(1, 1, 1, ω)]
(654) blasphemorgulhenicubor = E100#{&+1}###100 [φ(1, 1, 2, 0)]
(655) blasphemorgulheniteron = E100#{&+1}####100 [φ(1, 1, 3, 0)]
(656) blasphemorgulhenitope = E100#{&+1}#^#100 [φ(1, 1, ω, 0)]
(*formerly blasphemorgulhenuetope)
(657) blasphemorgulheno-blasphemorgulus = E100#{&+1}#{&}#100 [φ(1, 1, φ(1, 0, 0, 0), 0)]
(658) blasphemorgulheniarxitri = E100#{&+1}#{&+1}#100 [φ(1, 1, φ(1, 1, 0, 0), 0)]
(*formerly blasphemorgulhenuarxitri)
(659) blasphemorgulheniarxitet = E100#{&+1}#{&+1}#{&+1}#100 [φ(1, 1, φ(1, 1, φ(1, 1, 0, 0), 0), 0)]
...
(660) blasphemorguldeuterus = E100#{&+2}#100 [φ(1, 2, 0, 0) ~ #*^^^^#]
(661) blasphemorguldeuteraldubbus = E100(#{&+2}#){&+2}#100 [φ(1, 2, 0, 1)]
(662) blasphemorguldeuteraliterator = E100#{&+2}#>#100 [φ(1, 2, 0, ω)]
(663) dustaculated-blasphemorguldeuterus = E100#{&+2}#>#{&+2}#100 [φ(1, 2, 0, φ(1, 2, 0, 0))]
(664) blasphemorguldeutericross = E100#{&+2}##100 [φ(1, 2, 1, 0)]
(665) blasphemorguldeutericubor = E100#{&+2}###100 [φ(1, 2, 2, 0)]
(666) blasphemorguldeuteritope = E100#{&+2}#^#100 [φ(1, 2, ω, 0)]
(667) blasphemorguldeuteriarxitri = E100#{&+2}#{&+2}#100 [φ(1, 2, φ(1, 2, 0, 0), 0)]
(668) blasphemorguldeuteriarxitet = E100#{&+2}#{&+2}#{&+2}#100 [φ(1, 2, φ(1, 2, φ(1, 2, 0, 0), 0), 0)]
(669) blasphemorgultritus = E100#{&+3}#100 [φ(1, 3, 0, 0) ~ #*^^^^^#]
(670) blasphemorgultriticross = E100#{&+3}##100 [φ(1, 3, 1, 0)]
(671) blasphemorgultrititope = E100#{&+3}#^#100 [φ(1, 3, ω, 0)]
(672) blasphemorgultritiarxitri = E100#{&+3}#^#100 [φ(1, 3, φ(1, 3, 0, 0), 0)]
(673) blasphemorgultetertus = E100#{&+4}#100 [φ(1, 4, 0, 0)]
(674) blasphemorgultetertiarxitri = E100#{&+4}#{&+4}#100 [φ(1, 4, φ(1, 4, 0, 0), 0)]
(675) blasphemorgulpeptus = E100#{&+5}#100 [φ(1, 5, 0, 0)]
(676) blasphemorgulextus = E100#{&+6}#100 [φ(1, 6, 0, 0)]
(677) blasphemorguleptus = E100#{&+7}#100 [φ(1, 7, 0, 0)]
(678) blasphemorgulogdus = E100#{&+8}#100 [φ(1, 8, 0, 0)]
(679) blasphemorgulentus = E100#{&+9}#100 [φ(1, 9, 0, 0)]
(680) blasphemorguldekatus = E100#{&+10}#100 [φ(1, 10, 0, 0)]
...
(681) blasphemorgulhyperius = E100#{&+#}#100 [φ(1, ω, 0, 0) ~ #*{#}#]
(682) blasphemorgulhypericross = E100#{&+#}##100 [φ(1, ω, 1, 0)]
(683) blasphemorgulhyperitope = E100#{&+#}#^#100 [φ(1, ω, ω, 0)]
(684) blasphemorgulhyperiarxitri = E100#{&+#}#{&+#}#100 [φ(1, ω, φ(1, ω, 0, 0), 0)]
(685) blasphemorgulhyperihenus = E100#{&+#+1}#100 [φ(1, ω + 1, 0, 0)]
(686) blasphemorgulhyperideuterus = E100#{&+#+2}#100 [φ(1, ω + 2, 0, 0)]
(687) blasphemorgulhyperitritus = E100#{&+#+3}#100 [φ(1, ω + 3, 0, 0)]
(688) blasphemorguldihyperius = E100#{&+#+#}#100 [φ(1, ω·2, 0, 0)]
(689) blasphemorguldihyperihenus = E100#{&+#+#+1}#100 [φ(1, ω·2 + 1, 0, 0)]
(690) blasphemorgultrihyperius = E100#{&+#+#+#}#100 [φ(1, ω·3, 0, 0)]
(691) blasphemorgulquadrihyperius = E100#{&+#+#+#+#}#100 [φ(1, ω·4, 0, 0)]
(692) blasphemorgulquintihyperius = E100#{&+#+#+#+#+#}#100 [φ(1, ω·5, 0, 0)]
(693) blasphemorgulsextihyperius = E100#{&+#+#+#+#+#+#}#100 = E100#{&+##}6 [φ(1, ω·6, 0, 0)]
(694) blasphemorgulseptihyperius = E100#{&+##}7 [φ(1, ω·7, 0, 0)]
(695) blasphemorguloctihyperius = E100#{&+##}8 [φ(1, ω·8, 0, 0)]
(696) blasphemorgulnonihyperius = E100#{&+##}9 [φ(1, ω·9, 0, 0)]
(697) blasphemorguldecihyperius = E100#{&+##}10 [φ(1, ω·10, 0, 0)]
(698) blasphemorgulgridihyperius = E100#{&+##}#100 [φ(1, ω^2, 0, 0)]
(699) blasphemorgulgridihyperihenus = E100#{&+##+1}#100 [φ(1, ω^2 + 1, 0, 0)]
(700) blasphemorgulgridihyperi-hyperius = E100#{&+##+#}#100 [φ(1, ω^2 + ω, 0, 0)]
(701) blasphemorguldigridihyperius = E100#{&+##+##}#100 [φ(1, ω^2·2, 0, 0)]
(702) blasphemorgultrigridihyperius = E100#{&+##+##+##}#100 [φ(1, ω^2·3, 0, 0)]
(703) blasphemorgulcubihyperius = E100#{&+###}#100 [φ(1, ω^3, 0, 0)]
(704) blasphemorguldicubihyperius = E100#{&+###+###}#100 [φ(1, ω^3·2, 0, 0)]
(705) blasphemorgulquarticuhyperius = E100#{&+####}#100 [φ(1, ω^4, 0, 0)]
(706) blasphemorgulquinticuhyperius = E100#{&+#####}#100 [φ(1, ω^5, 0, 0)]
(707) blasphemorgulsexticuhyperius = E100#{&+######}#100 = E100#{&+#^#}6 [φ(1, ω^6, 0, 0)]
(708) blasphemorgulsepticuhyperius = E100#{&+#^#}7 [φ(1, ω^7, 0, 0)]
(709) blasphemorgulocticuhyperius = E100#{&+#^#}8 [φ(1, ω^8, 0, 0)]
(710) blasphemorgulnonicuhyperius = E100#{&+#^#}9 [φ(1, ω^9, 0, 0)]
(711) blasphemorguldecicuhyperius = E100#{&+#^#}10 [φ(1, ω^10, 0, 0)]
(712) blasphemorgulgodgahlus = E100#{&+#^#}#100 [φ(1, ω^ω, 0, 0)]
(*formerly blasphemorgulgodgahlahius)
(713) blasphemorgulgridgahlus = E100#{&+#^##}#100 [φ(1, ω^ω^2, 0, 0)]
(714) blasphemorgulgodgathus = E100#{&+#^#^#}#100 [φ(1, ω^ω^ω, 0, 0)]
(715) blasphemorgulgodtothus = E100#{&+#^#^#^#}#100 [φ(1, ω^ω^ω^ω, 0, 0)]
(716) blasphemorgulgodtertus = E100#{&+#^#^#^#^#}#100 [φ(1, ω^ω^ω^ω^ω, 0, 0)]
(717) blasphemorgulgodtopus = E100#{&+#^#^#^#^#^#}#100 [φ(1, ω^ω^ω^ω^ω^ω, 0, 0)]
(718) blasphemorgulgodhathus = E100#{&+#^#^#^#^#^#^#}#100 = E100#{&+#^^#}#7 [φ(1, ω^ω^ω^ω^ω^ω^ω, 0, 0)]
(719) blasphemorgulgodheptus = E100#{&+#^^#}#8 [φ(1, ε0, 0, 0)[8]]
(720) blasphemorgulgodoctus = E100#{&+#^^#}#9 [φ(1, ε0, 0, 0)[9]]
(721) blasphemorgulgodentus = E100#{&+#^^#}#10 [φ(1, ε0, 0, 0)[10]]
(722) blasphemorgulgoddekathus = E100#{&+#^^#}#11 [φ(1, ε0, 0, 0)[11]]
...
(723) blasphemorgultethrathus = E100#{&+#^^#}#100 [φ(1, ε0, 0, 0) ~ #*{#^^#}#]
(*formerly blasphemorgultethrathothius)
(724) blasphemorgultethracruxus = E100#{&+#^^##}#100 [φ(1, ζ0, 0, 0) ~ #*{#^^##}#]
(725) blasphemorgulpentacthulus = E100#{&+#^^^#}#100 [φ(1, Γ0, 0, 0) ~ #*{#^^^#}#]
(726) blasphemorgul-godsgodgulius = E100#{&+#{#}#}#100 [φ(1, φ(ω, 0, 0), 0, 0) ~ #*{#{#}#}#]
(727) blasphemorgul-godsgodgul-centurius = E100#{&+#{#{#}#}#}#100 [φ(1, φ(φ(ω, 0, 0), 0, 0), 0, 0) ~ #*{#{#{#}#}#}#]
(also called (728) blasphemorgul-godsgodgultaxitri)
(729) blasphemorgul-godsgodgultaxitet = E100#{&+#{#{#{#}#}#}#}#100 [φ(1, φ(φ(φ(ω, 0, 0), 0, 0), 0, 0), 0, 0)]
(730) blasphemorgul-godsgodgultaxipent = E100#{&+#{#{#{#{#}#}#}#}#}#100 [φ(1, φ(φ(φ(φ(ω, 0, 0), 0, 0), 0, 0), 0, 0), 0, 0)]
(731) blasphemorgul-godsgodgultaxihex = E100#{&+#{#{#{#{#{#}#}#}#}#}#}#100 = E100#{&+#{&}#}#6
[φ(1, φ(φ(φ(φ(φ(ω, 0, 0), 0, 0), 0, 0), 0, 0), 0, 0), 0, 0)]
(732) blasphemorgul-godsgodgultaxihept = E100#{&+#{&}#}#7 [φ(1, φ(1, 0, 0, 0), 0, 0)[7]]
(733) blasphemorgul-godsgodgultaxi-ogd = E100#{&+#{&}#}#8 [φ(1, φ(1, 0, 0, 0), 0, 0)[8]]
(734) blasphemorgul-godsgodgultaxi-enn = E100#{&+#{&}#}#9 [φ(1, φ(1, 0, 0, 0), 0, 0)[9]]
(735) blasphemorgul-godsgodgultaxideck = E100#{&+#{&}#}#10 [φ(1, φ(1, 0, 0, 0), 0, 0)[10]]
(736) blasphemorgul-godsgodgultaxicose = E100#{&+#{&}#}#20 [φ(1, φ(1, 0, 0, 0), 0, 0)[20]]
(737) blasphemorgul-godsgodgultaxitriane = E100#{&+#{&}#}#30 [φ(1, φ(1, 0, 0, 0), 0, 0)[30]]
(738) blasphemorgul-godsgodgultaxipenine = E100#{&+#{&}#}#50 [φ(1, φ(1, 0, 0, 0), 0, 0)[50]]
...
(739) blasphemorgulversiadyon = E100#{&+#{&}#}#100 [φ(1, φ(1, 0, 0, 0), 0, 0) ~ #*{{#,#,1,2}}#]
(also called (740) blasphemorgul-godsgodgultaxihect and (741) blasphemorgul-godsgodgultaxihecate)
(742) blasphemorgul-godsgodgultaxichill = E100#{&+#{&}#}#1,000 [φ(1, φ(1, 0, 0, 0), 0, 0)]
(743) blasphemorgul-godsgodgultaximyr = E100#{&+#{&}#}#10,000 [φ(1, φ(1, 0, 0, 0), 0, 0)]
(744) blasphemorgul-godsgodgultaxigong = E100#{&+#{&}#}#100,000 [φ(1, φ(1, 0, 0, 0), 0, 0)]
(745) blasphemorgul-godsgodgultaxi-octad = E100#{&+#{&}#}#100,000,000 [φ(1, φ(1, 0, 0, 0), 0, 0)]
(746) blasphemorgul-godsgodgultaxi-sedeniad = E100#{&+#{&}#}#10,000,000,000,000,000 [φ(1, φ(1, 0, 0, 0), 0, 0)]
(747) blasphemorgul-godsgodgultaxi-googol = E100#{&+#{&}#}#(E100) [φ(1, φ(1, 0, 0, 0), 0, 0)]
(748) blasphemorgul-godsgodgultaxi-grangol = E100#{&+#{&}#}#(E100#100) [φ(1, φ(1, 0, 0, 0), 0, 0)]
(749) blasphemorgul-godsgodgultaxi-gugold = E100#{&+#{&}#}#(E100##100) [φ(1, φ(1, 0, 0, 0), 0, 0)]
(750) blasphemorgul-godsgodgultaxi-godgahlah = E100#{&+#{&}#}#(E100#^#100) [φ(1, φ(1, 0, 0, 0), 0, 0)]
(751) blasphemorgul-godsgodgultaxi-tethrathoth = E100#{&+#{&}#}#(E100#^^#100) [φ(1, φ(1, 0, 0, 0), 0, 0)]
(752) blasphemorgul-godsgodgultaxi-tethracross = E100#{&+#{&}#}#(E100#^^##100) [φ(1, φ(1, 0, 0, 0), 0, 0)]
(753) blasphemorgul-godsgodgultaxi-pentacthulhum = E100#{&+#{&}#}#(E100#^^^#100) [φ(1, φ(1, 0, 0, 0), 0, 0)]
(754) blasphemorgul-godsgodgultaxi-godsgodgulus = E100#{&+#{&}#}#(E100#{#}#100) [φ(1, φ(1, 0, 0, 0), 0, 0)]
(755) blasphemorgul-godsgodgultaxi-blasphemorgulus = E100#{&+#{&}#}#(E100#{&}#100) [φ(1, φ(1, 0, 0, 0), 0, 0)]
(756) blasphemorgul-godsgodgultaxi-blasphemorgulhenus = E100#{&+#{&}#}#(E100#{&+1}#100) [φ(1, φ(1, 0, 0, 0), 0, 0)]
(757) blasphemorgul-godsgodgultaxi-blasphemorgulhyperius = E100#{&+#{&}#}#(E100#{&+#}#100) [φ(1, φ(1, 0, 0, 0), 0, 0)]
(758) grand blasphemorgulversiadyon = E100#{&+#{&}#}#(E100#{&+#{&}#}#100) = E100#{&+#{&}#}#100#2 [φ(1, φ(1, 0, 0, 0), 0, 0)]
(also called (759) blasphemorgul-godsgodgultaxi-blasphemorgul-godsgodgultaxihect)
(760) grangol-carta-blasphemorgulversiadyon = E100#{&+#{&}#}#100#100 [φ(1, φ(1, 0, 0, 0), 0, 0) + 1]
(761) terrible blasphemorgulversiadyon = E100(#{&+#{&}#}#)^^#100 [ε(φ(1, φ(1, 0, 0, 0), 0, 0) + 1)]
(762) blasphemorgulversiadyonaldubbus = E100(#{&+#{&}#}#){&+#{&}#}#100 [φ(1, φ(1, 0, 0, 0), 0, 1)]
(763) blasphemorgulversiadyonaliterator = E100#{&+#{&}#}#>#100 [ φ(1, φ(1, 0, 0, 0), 0, ω)]
(764) dustaculated-blasphemorgulversiadyon = E100#{&+#{&}#}#>#{&+#{&}#}#100 [φ(1, φ(1, 0, 0, 0), 0, φ(1, φ(1, 0, 0, 0), 0, 0))]
(765) blasphemorgulversiadyocross = E100#{&+#{&}#}##100 [φ(1, φ(1, 0, 0, 0), 1, 0)]
(766) blasphemorgulversiadyotope = E100#{&+#{&}#}#^#100 [φ(1, φ(1, 0, 0, 0), ω, 0)]
(767) blasphemorgulversiadyonarxitri = E100#{&+#{&}#}#{&+#{&}#}#100 [φ(1, φ(1, 0, 0, 0), φ(1, φ(1, 0, 0, 0), 0, 0), 0)]
(768) blasphemorgulversiadyonhenus = E100#{&+#{&}#+1}#100 [φ(1, φ(1, 0, 0, 0) + 1, 0, 0)]
(769) blasphemorgulversiadyondeuterus = E100#{&+#{&}#+2}#100 [φ(1, φ(1, 0, 0, 0) + 2, 0, 0)]
(770) blasphemorgulversiadyonhyperius = E100#{&+#{&}#+#}#100 [φ(1, φ(1, 0, 0, 0) + ω, 0, 0)]
(771) blasphemorgulversiadyodiate = E100#{&+#{&}#+#{&}#}#100 [φ(1, φ(1, 0, 0, 0)·2, 0, 0)]
(772) blasphemorgulversiadyotriate = E100#{&+#{&}#+#{&}#+#{&}#}#100 [φ(1, φ(1, 0, 0, 0)·3, 0, 0)]
(773) blasphemorgulversiadyohyperate = E100#{&+#{&}#*#}#100 [φ(1, φ(1, 0, 0, 0)·ω, 0, 0)]
(774) blasphemorgulversiadyodeuteroate = E100#{&+#{&}#*#{&}#}#100 [φ(1, φ(1, 0, 0, 0)^2, 0, 0)]
(775) blasphemorgulversiadyotritoate = E100#{&+#{&}#*#{&}#*#{&}#}#100 [φ(1, φ(1, 0, 0, 0)^3, 0, 0)]
(776) blasphemorgulversed-blasphemorgulfact = E100#{&+(#{&}#)^#}#100 [φ(1, φ(1, 0, 0, 0)^ω, 0, 0)]
(777) blasphemorgulversed-dutetrated-blasphemorgulus = E100#{&+(#{&}#)^(#{&}#)}#100 [φ(1, φ(1, 0, 0, 0)^φ(1, 0, 0, 0), 0, 0)]
(778) blasphemorgulversed-terriblasphemorgulus = E100#{&+(#{&}#)^^#}#100 [φ(1, ε(φ(1, 0, 0, 0) + 1), 0, 0)]
(779) blasphemorgulversed-terrisquared-blasphemorgulus = E100#{&+(#{&}#)^^#}#100 [φ(1, ζ(φ(1, 0, 0, 0) + 1), 0, 0)]
(780) blasphemorgulversed-horriblasphemorgulus = E100#{&+(#{&}#)^^#}#100 [φ(1, Γ(φ(1, 0, 0, 0) + 1), 0, 0)]
(781) blasphemorgulversed-godsgodgulatiblasphemorgulus = E100#{&+(#{&}#){#}#}#100 [φ(1, φ(ω, 0, φ(1, 0, 0, 0) + 1), 0, 0)]
(782) blasphemorgulversed-blasphemorgulnumus-blasphemorgulus = E100#{&+(#{&}#){#{&}#}#}#100 [φ(1, φ(1, 0, 0, 0), 0, 1), 0, 0)]
(783) blasphemorgulversed-tweilasphemorgue = E100#{&+(#{&}#){&}#}#100 [φ(1, φ(1, 0, 0, 1), 0, 0)]
(784) blasphemorgulversed-blasphemorguliterator = E100#{&+#{&}#>#}#100 [φ(1, φ(1, 0, 0, ω), 0, 0)]
(785) blasphemorgulversed-dustaculated-blasphemorgulus = E100#{&+#{&}#>#{&}#}#100 [φ(1, φ(1, 0, 0, φ(1, 0, 0, 0)), 0, 0)]
(786) blasphemorgulversed-blasphemorgulcross = E100#{&+#{&}##}#100 [φ(1, φ(1, 0, 1, 0), 0, 0)]
(787) blasphemorgulversed-blasphemorgulcubor = E100#{&+#{&}###}#100 [φ(1, φ(1, 0, 2, 0), 0, 0)]
(788) blasphemorgulversed-blasphemorgultope = E100#{&+#{&}#^#}#100 [φ(1, φ(1, 0, ω, 0), 0, 0)]
(789) blasphemorgulversed-blasphemorgularxitri = E100#{&+#{&}#{&}#}#100 [φ(1, φ(1, 0, φ(1, 0, 0, 0), 0), 0, 0)]
(790) blasphemorgulversed-blasphemorgulhenus = E100#{&+#{&+1}#}#100 [φ(1, φ(1, 1, 0, 0), 0, 0)]
(791) blasphemorgulversed-blasphemorguldeuterus = E100#{&+#{&+2}#}#100 [φ(1, φ(1, 2, 0, 0), 0, 0)]
(792) blasphemorgulversed-blasphemorgultritus = E100#{&+#{&+3}#}#100 [φ(1, φ(1, 3, 0, 0), 0, 0)]
(793) blasphemorgulversed-blasphemorgultetertus = E100#{&+#{&+4}#}#100 [φ(1, φ(1, 4, 0, 0), 0, 0)]
(794) blasphemorgulversed-blasphemorgulhyperius = E100#{&+#{&+#}#}#100 [φ(1, φ(1, ω, 0, 0), 0, 0)]
(795) blasphemorgulversed-blasphemorgulhyperihenus = E100#{&+#{&+#+1}#}#100 [φ(1, φ(1, ω + 1, 0, 0), 0, 0)]
(796) blasphemorgulversed-blasphemorguldihyperius = E100#{&+#{&+#+#}#}#100 [φ(1, φ(1, ω·2, 0, 0), 0, 0)]
(797) blasphemorgulversed-blasphemorgulgridihyperius = E100#{&+#{&+##}#}#100 [φ(1, φ(1, ω^2, 0, 0), 0, 0)]
(798) blasphemorgulversed-blasphemorgulgodgahlus = E100#{&+#{&+#^#}#}#100 [φ(1, φ(1, ω^ω, 0, 0), 0, 0)]
(799) blasphemorgulversed-blasphemorgultethrathus = E100#{&+#{&+#^^#}#}#100 [φ(1, φ(1, ε0, 0, 0), 0, 0)]
(800) blasphemorgulversed-blasphemorgultethracruxus = E100#{&+#{&+#^^##}#}#100 [φ(1, φ(1, ζ0, 0, 0), 0, 0)]
(801) blasphemorgulversed-blasphemorgulpentacthulus = E100#{&+#{&+#^^^#}#}#100 [φ(1, φ(1, Γ0, 0, 0), 0, 0)]
(802) blasphemorgulversed-blasphemorgul-godsgodgulus = E100#{&+#{&+#{#}#}#}#100 [φ(1, φ(1, φ(ω, 0, 0), 0, 0), 0, 0)]
...
(803) blasphemorgulversiatrion = E100#{&+#{&+#{&}#}#}#100 [φ(1, φ(1, φ(1, 0, 0, 0), 0, 0), 0, 0)]
(804) blasphemorgulversiadyated-blasphemorgulcross = E100#{&+#{&+#{&}##}#}#100 [φ(1, φ(1, φ(1, 0, 1, 0), 0, 0), 0, 0)]
(805) blasphemorgulversiadyated-blasphemorgultope = E100#{&+#{&+#{&}#^#}#}#100 [φ(1, φ(1, φ(1, 0, ω, 0), 0, 0), 0, 0)]
(806) blasphemorgulversiadyated-blasphemorgulhenus = E100#{&+#{&+#{&+1}#}#}#100 [φ(1, φ(1, φ(1, 1, 0, 0), 0, 0), 0, 0)]
(807) blasphemorgulversiadyated-blasphemorgulhyperius = E100#{&+#{&+#{&+#}#}#}#100 [φ(1, φ(1, φ(1, ω, 0, 0), 0, 0), 0, 0)]
(808) blasphemorgulversiadyated-blasphemorgultethrathus = E100#{&+#{&+#{&+#^^#}#}#}#100 [φ(1, φ(1, φ(1, ε0, 0, 0), 0, 0), 0, 0)]
(809) blasphemorgulversiadyated-blasphemorgul-godsgodgulus = E100#{&+#{&+#{&+#{#}#}#}#}#100 [φ(1, φ(1, φ(1, φ(ω, 0, 0), 0, 0), 0, 0), 0, 0)]
...
(810) blasphemorgulversiatetrion = E100#{&+#{&+#{&+#{&}#}#}#}#100 = E100#{&+&}#4 [φ(1, φ(1, φ(1, φ(1, 0, 0, 0), 0, 0), 0, 0), 0, 0)]
(811) blasphemorgulversiatriated-blasphemorgulhenus = E100#{&+#{&+#{&+#{&+1}#}#}#}#100 [φ(1, φ(1, φ(1, φ(1, 1, 0, 0), 0, 0), 0, 0), 0, 0)]
(812) blasphemorgulversiatriated-blasphemorgulhyperius = E100#{&+#{&+#{&+#{&+#}#}#}#}#100 [φ(1, φ(1, φ(1, φ(1, ω, 0, 0), 0, 0), 0, 0), 0, 0)]
...
(813) blasphemorgulversiapention = E100#{&+#{&+#{&+#{&+#{&}#}#}#}#}#100 = E100#{&+&}#5
[φ(1, φ(1, φ(1, φ(1, φ(1, 0, 0, 0), 0, 0), 0, 0), 0, 0), 0, 0)]
(814) blasphemorgulversiahexion = E100#{&+#{&+#{&+#{&+#{&+#{&}#}#}#}#}#}#100 = E100#{&+&}#6
[φ(1, φ(1, φ(1, φ(1, φ(1, φ(1, 0, 0, 0), 0, 0), 0, 0), 0, 0), 0, 0), 0, 0)]
(815) blasphemorgulversiaheption = E100#{&+#{&+#{&+#{&+#{&+#{&+#{&}#}#}#}#}#}#}#100 = E100#{&+&}#7
[φ(1, φ(1, φ(1, φ(1, φ(1, φ(1, φ(1, 0, 0, 0), 0, 0), 0, 0), 0, 0), 0, 0), 0, 0), 0, 0)]
(816) blasphemorgulversiaoction = E100#{&+#{&+#{&+#{&+#{&+#{&+#{&+#{&}#}#}#}#}#}#}#}#100 = E100#{&+&}#8
[φ(1, φ(1, φ(1, φ(1, φ(1, φ(1, φ(1, φ(1, 0, 0, 0), 0, 0), 0, 0), 0, 0), 0, 0), 0, 0), 0, 0), 0, 0)]
(817) blasphemorgulversiaennion = E100#{&+#{&+#{&+#{&+#{&+#{&+#{&+#{&+#{&}#}#}#}#}#}#}#}#}#100 = E100#{&+&}#9
[φ(1, φ(1, φ(1, φ(1, φ(1, φ(1, φ(1, φ(1, φ(1, 0, 0, 0), 0, 0), 0, 0), 0, 0), 0, 0), 0, 0), 0, 0), 0, 0), 0, 0)]
(818) blasphemorgulversiadecion = E100#{&+#{&+#{&+#{&+#{&+#{&+#{&+#{&+#{&+#{&}#}#}#}#}#}#}#}#}#}#100 = E100#{&+&}#10
[φ(1, φ(1, φ(1, φ(1, φ(1, φ(1, φ(1, φ(1, φ(1, φ(1, 0, 0, 0), 0, 0), 0, 0), 0, 0), 0, 0), 0, 0), 0, 0), 0, 0), 0, 0), 0, 0)]
(819) blasphemorgulversiadodecion = E100#{&+&}#12 [φ(2, 0, 0, 0)[12]]
(820) blasphemorgulversiapentadecion = E100#{&+&}#15 [φ(2, 0, 0, 0)[15]]
(821) blasphemorgulversiaicosion = E100#{&+&}#20 [φ(2, 0, 0, 0)[20]]
(822) blasphemorgulversiatriacontion = E100#{&+&}#30 [φ(2, 0, 0, 0)[30]]
(823) blasphemorgulversiapentacontion = E100#{&+&}#50 [φ(2, 0, 0, 0)[50]]
...
And making more fundamental sequences...
(824) blasphemordeus = E100#{&+&}#100 [φ(2, 0, 0, 0) ~ *{#,#,1,2}]
= E100#{&+#{&+#{...&+#{&+#{&}#}#...}#}#}#100
w/ 100 &'s
(also called (825) blasphemorgulversiahecation)
(826) blasphemorgulversiachilion = E100#{&+&}#1,000 [φ(2, 0, 0, 0)]
(827) blasphemorgulversiamyrion = E100#{&+&}#10,000 [φ(2, 0, 0, 0)]
(828) blasphemorgulversiagongion = E100#{&+&}#100,000 [φ(2, 0, 0, 0)]
(829) blasphemorgulversiaoctadion = E100#{&+&}#100,000,000 [φ(2, 0, 0, 0)]
(830) blasphemorgulversiasedeniadion = E100#{&+&}#10,000,000,000,000,000 [φ(2, 0, 0, 0)]
...
(831) grand blasphemordeus = E100#{&+&}#100#2 [φ(2, 0, 0, 0)]
(832) grangol-carta-blasphemordeus = E100#{&+&}#100#100 [φ(2, 0, 0, 0) + 1]
(833) terrible blasphemordeus = E100(#{&+&}#)^^#100 [ε(φ(2, 0, 0, 0) + 1)]
(834) terrisquared blasphemordeus = E100(#{&+&}#)^^##100 [ζ(φ(2, 0, 0, 0) + 1)]
(835) horrible blasphemordeus = E100(#{&+&}#)^^^#100 [Γ(φ(2, 0, 0, 0) + 1)]
(836) blasphemous blasphemordeus = E100(#{&+&}#){&}#100 [φ(1, 0, 0, φ(2, 0, 0, 0) + 1)]
(837) blasphemosquared blasphemordeus = E100(#{&+&}#){&}##100 [φ(1, 0, 1, φ(2, 0, 0, 0) + 1)]
(838) blasphemotoped blasphemordeus = E100(#{&+&}#){&}#^#100 [φ(1, 0, ω, φ(2, 0, 0, 0) + 1)]
(839) blasphemodeusinumus blasphemordeus = E100(#{&+&}#){&}(#{&+&}#)100 [φ(1, 0, φ(2, 0, 0, 0), 1)]
(840) blasphemogulhenated blasphemordeus = E100(#{&+&}#){&+1}#100 [φ(1, 1, 0, φ(2, 0, 0, 0) + 1)]
(841) blasphemoguldeuterated blasphemordeus = E100(#{&+&}#){&+2}#100 [φ(1, 2, 0, φ(2, 0, 0, 0) + 1)]
(842) blasphemogulhyperated blasphemordeus = E100(#{&+&}#){&+#}#100 [φ(1, ω, 0, φ(2, 0, 0, 0) + 1)]
(843) blasphemogulversiadyonated blasphemordeus = E100(#{&+&}#){&+#{&}#}#100 [φ(1, φ(1, 0, 0, 0), 0, φ(2, 0, 0, 0) + 1)]
(844) blasphemoguldeusi-versidyonumated blasphemordeus = E100(#{&+&}#){&+#{&+&}#}#100 [φ(1, φ(2, 0, 0, 0), 0, 1)]
(845) blasphemordeusidubbus = E100(#{&+&}#){&+&}#100 [φ(2, 0, 0, 1)]
(846) blasphemordeusitribbus = E100((#{&+&}#){&+&}#){&+&}#100 [φ(2, 0, 0, 2)]
(847) blasphemordeusiterator = E100#{&+&}#>#100 [φ(2, 0, 0, ω)]
(848) dustaculated-blasphemordeus = E100#{&+&}#>#{&+&}#100 [φ(2, 0, 0, φ(2, 0, 0, 0))]
(849) tristaculated-blasphemordeus = E100#{&+&}#>#{&+&}#>#{&+&}#100 [φ(2, 0, 0, φ(2, 0, 0, φ(2, 0, 0, 0)))]
...
(845) blasphemordeusicross = E100#{&+&}##100 [φ(2, 0, 1, 0) ~ #**^#]
(846) blasphemous blasphemordeusicross = E100(#{&+&}##){&}#100 [φ(1, 0, 0, φ(2, 0, 1, 0) + 1)]
(847) blasphemordeusated blasphemordeusicross = E100(#{&+&}##){&+&}#100 [φ(2, 0, 0, φ(2, 0, 1, 0) + 1)]
(848) blasphemordeusicruxidubbus = E100(#{&+&}##){&+&}##100 [φ(2, 0, 1, 1)]
(849) blasphemordeusitercross = E100#{&+&}##>#100 [φ(2, 0, 1, ω)]
(850) dustaculated-blasphemordeusicross = E100#{&+&}##>#{&+&}##100 [φ(2, 0, 1, φ(2, 0, 1, 0))]
(851) blasphemordeusicubor = E100#{&+&}###100 [φ(2, 0, 2, 0) ~ #**^^#]
(852) blasphemordeusitercubor = E100#{&+&}###>#100 [φ(2, 0, 2, ω)]
(853) blasphemordeusiteron = E100#{&+&}####100 [φ(2, 0, 3, 0)]
(854) blasphemordeusipeton = E100#{&+&}#####100 [φ(2, 0, 4, 0)]
(855) blasphemordeusitope = E100#{&+&}#^#100 [φ(2, 0, ω, 0)]
(856) blasphemordeusitopothoth = E100#{&+&}(#^#*#)100 [φ(2, 0, ω + 1, 0)]
(857) blasphemordeusitopodeus = E100#{&+&}(#^#*#^#)100 [φ(2, 0, ω·2, 0)]
(858) blasphemordeusilattitope = E100#{&+&}#^##100 [φ(2, 0, ω^2, 0)]
(859) blasphemordeusicubitope = E100#{&+&}#^###100 [φ(2, 0, ω^3, 0)]
(860) blasphemordeusispatialtope = E100#{&+&}#^#^#100 [φ(2, 0, ω^ω, 0)]
(861) blasphemordeusisuperspatialtope = E100#{&+&}#^#^#^#100 [φ(2, 0, ω^ω^ω, 0)]
(862) blasphemordeuso-tethrathoth = E100#{&+&}#^^#100 [φ(2, 0, ε0, 0)]
(863) blasphemordeuso-blasphemorgulus = E100#{&+&}#{&}#100 [φ(2, 0, φ(1, 0, 0, 0), 0)]
(864) blasphemordeusiarxitri = E100#{&+&}#{&+&}#100 [φ(2, 0, φ(2, 0, 0, 0), 0)]
(865) blasphemordeusiarxitet = E100#{&+&}#{&+&}#{&+&}#100 [φ(2, 0, φ(2, 0, φ(2, 0, 0, 0), 0), 0)]
...
(866) blasphemordeusihenus = E100#{&+&+1}#100 [φ(2, 1, 0, 0) ~ #**^^^#]
(867) blasphemordeusihenaldubbus = E100(#{&+&+1}#){&+&+1}#100 [φ(2, 1, 0, 1)]
(868) blasphemordeusihenaliterator = E100#{&+&+1}#>#100 [φ(2, 1, 0, ω)]
(869) dustaculated-blasphemordeusihenus = E100#{&+&+1}#>#{&+&+1}#100 [φ(2, 1, 0, φ(2, 1, 0, 0))]
(870) blasphemordeusihenicross = E100#{&+&+1}##100 [φ(2, 1, 1, 0)]
(871) blasphemordeusihenitope = E100#{&+&+1}##100 [φ(2, 1, ω, 0)]
(872) blasphemordeusiheniarxitri = E100#{&+&+1}#{&+&+1}#100 [φ(2, 1, φ(2, 1, 0, 0), 0)]
(873) blasphemordeusideuterus = E100#{&+&+2}#100 [φ(2, 2, 0, 0)]
(874) blasphemordeusitritus = E100#{&+&+3}#100 [φ(2, 3, 0, 0)]
(875) blasphemordeusitetertus = E100#{&+&+4}#100 [φ(2, 4, 0, 0)]
(876) blasphemordeusihyperius = E100#{&+&+#}#100 [φ(2, ω, 0, 0)]
(877) blasphemordeusihyperihenus = E100#{&+&+#+1}#100 [φ(2, ω + 1, 0, 0)]
(878) blasphemordeusidihyperius = E100#{&+&+#+#}#100 [φ(2, ω·2, 0, 0)]
(879) blasphemordeusigridihyperius = E100#{&+&+##}#100 [φ(2, ω^2, 0, 0)]
(880) blasphemordeusigodgahlus = E100#{&+&+#^#}#100 [φ(2, ω^ω, 0, 0)]
(881) blasphemordeusitethrathus = E100#{&+&+#^^#}#100 [φ(2, ε0, 0, 0)]
(882) blasphemordeusi-blasphemorgulus = E100#{&+&+#{&}#}#100 [φ(2, φ(1, 0, 0, 0), 0, 0)]
(883) blasphemordeusiversiadyon = E100#{&+&+#{&+&}#}#100 [φ(2, φ(2, 0, 0, 0), 0, 0)]
(884) blasphemordeusiversed-blasphemordeusihyperius = E100#{&+&+#{&+&+#}#}#100 [φ(2, φ(2, ω, 0, 0), 0, 0)]
(885) blasphemordeusiversiatrion = E100#{&+&+#{&+&+#{&+&}#}#}#100 [φ(2, φ(2, φ(2, 0, 0, 0), 0, 0), 0, 0)]
(886) blasphemordeusiversiatetrion = E100#{&+&+#{&+&+#{&+&+#{&+&}#}#}#}#100 [φ(2, φ(2, φ(2, φ(2, 0, 0, 0), 0, 0), 0, 0), 0, 0)]
...
(887) blasphemortruce = E100#{&+&+&}#100 [φ(3, 0, 0, 0) ~ **{#,#,1,2}]
(888) blasphemous blasphemortruce = E100(#{&+&+&}#){&}#100 [φ(1, 0, 0, φ(3, 0, 0, 0) + 1)]
(889) blasphemordeusated blasphemortruce = E100(#{&+&+&}#){&+&}#100 [φ(2, 0, 0, φ(3, 0, 0, 0) + 1)]
(890) blasphemortrucidubbus = E100(#{&+&+&}#){&+&+&}#100 [φ(3, 0, 0, 1)]
(891) blasphemortruciterator = E100#{&+&+&}#>#100 [φ(3, 0, 0, ω)]
(892) dustaculated-blasphemortruce = E100#{&+&+&}#>#{&+&+&}#100 [φ(3, 0, 0, φ(3, 0, 0, 0))]
(893) blasphemortrucicross = E100#{&+&+&}##100 [φ(3, 0, 1, 0)]
(894) blasphemortrucicubor = E100#{&+&+&}###100 [φ(3, 0, 2, 0)]
(895) blasphemortrucitope = E100#{&+&+&}#^#100 [φ(3, 0, ω, 0)]
(896) blasphemortruciarxitri = E100#{&+&+&}#{&+&+&}#100 [φ(3, 0, φ(3, 0, 0, 0), 0)]
(897) blasphemortrucihenus = E100#{&+&+&+1}#100 [φ(3, 1, 0, 0)]
(898) blasphemortrucideuterus = E100#{&+&+&+2}#100 [φ(3, 2, 0, 0)]
(899) blasphemortrucihyperius = E100#{&+&+&+#}#100 [φ(3, ω, 0, 0)]
(900) blasphemortruciversiadyon = E100#{&+&+&+#{&+&+&}#}#100 [φ(3, φ(3, 0, 0, 0), 0, 0)]
(901) blasphemortruciversiatrion = E100#{&+&+&+#{&+&+&+#{&+&+&}#}#}#100 [φ(3, φ(3, φ(3, 0, 0, 0), 0, 0), 0, 0)]
...
(902) blasphemorquad = E100#{&+&+&+&}#100 [φ(4, 0, 0, 0) ~ ***{#,#,1,2}]
(903) blasphemorquaditerator = E100#{&+&+&+&}#>#100 [φ(4, 0, 0, ω)]
(904) blasphemorquadicross = E100#{&+&+&+&}##100 [φ(4, 0, 1, 0)]
(905) blasphemorquaditope = E100#{&+&+&+&}#^#100 [φ(4, 0, ω, 0)]
(906) blasphemorquadihenus = E100#{&+&+&+&+1}#100 [φ(4, 1, 0, 0)]
(907) blasphemorquadihyperius = E100#{&+&+&+&+#}#100 [φ(4, ω, 0, 0)]
(908) blasphemorquadiversiadyon = E100#{&+&+&+&+#{&+&+&+&}#}#100 [φ(4, φ(4, 0, 0, 0), 0, 0)]
...
(909) blasphemorquid = E100#{&+&+&+&+&}#100 [φ(5, 0, 0, 0)]
(910) blasphemorquidihenus = E100#{&+&+&+&+&+1}#100 [φ(5, 1, 0, 0)]
(911) blasphemorquidihyperius = E100#{&+&+&+&+&+#}#100 [φ(5, ω, 0, 0)]
(912) blasphemorquidiversiadyon = E100#{&+&+&+&+&+#{&+&+&+&+&}#}#100 [φ(5, φ(5, 0, 0, 0), 0, 0)]
...
(913) blasphemorsid = E100#{&+&+&+&+&+&}#100 = E100#{&#}#6 [φ(6, 0, 0, 0)]
(914) blasphemorseptuce = E100#{&+&+&+&+&+&+&}#100 = E100#{&#}#7 [φ(7, 0, 0, 0)]
(915) blasphemoroctuce = E100#{&+&+&+&+&+&+&+&}#100 = E100#{&#}#8 [φ(8, 0, 0, 0)]
(916) blasphemornonice = E100#{&+&+&+&+&+&+&+&+&}#100 = E100#{&#}#9 [φ(9, 0, 0, 0)]
(917) blasphemordecice = E100#{&+&+&+&+&+&+&+&+&+&}#100 = E100#{&#}#10 [φ(10, 0, 0, 0)]
(918) blasphemorvigintice = E100#{&#}#20 [φ(20, 0, 0, 0)]
...
(919) blasphemorhyperiath = E100#{&#}#100 [φ(ω, 0, 0, 0) ~ *{#}{#,#,1,2}]
(also called (920) blasphemorcentice. Comparable to Saibian's "gorgonghoulgog", defined using his ad hoc extension known as "Hyper-Hyper-Extended Cascading-E notation".)
(920) grangol-carta-blasphemorhyperiath = E100#{&#}#100#100 [φ(ω, 0, 0, 0) + 1]
(921) blasphemorhyperiath-by-deuteron = E100#{&#}#100#{&#}#100 [φ(ω, 0, 0, 0)·2]
(922) blasphemorhyperiath-by-hyperion = E100#{&#}#*#100 [φ(ω, 0, 0, 0)·ω]
(923) deutero-blasphemorhyperiath = E100#{&#}#*#{&#}#100 [φ(ω, 0, 0, 0)^2]
(924) blasphemorhyperiathifact = E100(#{&#}#)^#100 [φ(ω, 0, 0, 0)^ω]
(925) dutetrated-blasphemorhyperiath = E100(#{&#}#)^(#{&#}#)100 [φ(ω, 0, 0, 0)^φ(ω, 0, 0, 0)]
(926) terrible blasphemorhyperiath = E100(#{&#}#)^^#100 [ε(φ(ω, 0, 0, 0) + 1)]
(927) terrisquared blasphemorhyperiath = E100(#{&#}#)^^##100 [ζ(φ(ω, 0, 0, 0) + 1)]
(928) horrible blasphemorhyperiath = E100(#{&#}#)^^^#100 [Γ(φ(ω, 0, 0, 0) + 1)]
(929) blasphemous blasphemorhyperiath = E100(#{&#}#){&}#100 [φ(1, 0, 0, φ(ω, 0, 0, 0) + 1)]
(930) blasphemodeusated blasphemorhyperiath = E100(#{&#}#){&+&}#100 [φ(2, 0, 0, φ(ω, 0, 0, 0) + 1)]
(931) blasphemorhyperiathidubbus = E100(#{&#}#){&#}#100 [φ(ω, 0, 0, 1)]
(932) blasphemorhyperiathitribbus = E100((#{&#}#){&#}#){&#}#100 [φ(ω, 0, 0, 2)]
(933) blasphemorhyperiathiterator = E100#{&#}#>#100 [φ(ω, 0, 0, ω)]
(934) blasphemorhyperiated blasphemorhyperiathiterator = E100(#{&#}#>#){&#}#100 [φ(ω, 0, 0, ω + 1)]
(935) blasphemorhyperiathiditerator = E100#{&#}(#+#)100 [φ(ω, 0, 0, ω·2)]
(936) blasphemorhyperiathigriditerator = E100#{&#}##100 [φ(ω, 0, 0, ω^2)]
(937) blasphemorhyperiathispatialator = E100#{&#}#^#100 [φ(ω, 0, 0, ω^ω)]
(939) tethrathoth-turreted-blasphemorhyperiath = E100#{&#}#^#100 [φ(ω, 0, 0, ε0)]
(940) blasphemorgulus-turreted-blasphemorhyperiath = E100#{&#}#^#100 [φ(ω, 0, 0, φ(1, 0, 0, 0))]
(941) dustaculated-blasphemorhyperiath = E100#{&#}#^#100 [φ(ω, 0, 0, φ(ω, 0, 0, 0))]
(942) tristaculated-blasphemorhyperiath = E100#{&#}#^#100 [φ(ω, 0, 0, φ(ω, 0, 0, φ(ω, 0, 0, 0)))]
(943) blasphemorhyperiathicross = E100#{&#}##100 [φ(ω, 0, 1, 0)]
(944) blasphemorhyperiathicruxidubbus = E100(#{&#}##){&#}#100 [φ(ω, 0, 1, 1)]
(945) blasphemorhyperiathitercross = E100#{&#}##>#100 [φ(ω, 0, 1, ω)]
(946) dustaculated-blasphemorhyperiathicross = E100#{&#}##>#{&#}##100 [φ(ω, 0, 1, φ(ω, 0, 1, 0))]
(947) blasphemorhyperiathicubor = E100#{&#}###100 [φ(ω, 0, 2, 0)]
(948) blasphemorhyperiathiteron = E100#{&#}####100 [φ(ω, 0, 3, 0)]
(949) blasphemorhyperiathitope = E100#{&#}#^#100 [φ(ω, 0, ω, 0)]
(950) blasphemorhyperiathitopothoth = E100#{&#}(#^#*#)100 [φ(ω, 0, ω + 1, 0)]
(951) blasphemorhyperiathitopodeus = E100#{&#}(#^#*#^#)100 [φ(ω, 0, ω·2, 0)]
(952) blasphemorhyperiathilattitope = E100#{&#}#^##100 [φ(ω, 0, ω^2, 0)]
(953) blasphemorhyperiathispatialtope = E100#{&#}#^#^#100 [φ(ω, 0, ω^ω, 0)]
(954) blasphemorhyperiatho-tethrathoth = E100#{&#}#^^#100 [φ(ω, 0, ε0, 0)]
(955) blasphemorhyperiatho-blasphemorgulus = E100#{&#}#{&}#100 [φ(ω, 0, φ(1, 0, 0, 0), 0)]
(956) blasphemorhyperiathiarxitri = E100#{&#}#{&#}#100 [φ(ω, 0, φ(ω, 0, 0, 0), 0)]
(957) blasphemorhyperiathiarxitet = E100#{&#}#{&#}#{&#}#100 [φ(ω, 0, φ(ω, 0, φ(ω, 0, 0, 0), 0), 0)]
...
(958) blasphemorhyperiathihenus = E100#{&#+1}#100 [φ(ω, 1, 0, 0)]
(959) blasphemorhyperiathihenicross = E100#{&#+1}##100 [φ(ω, 1, 1, 0)]
(960) blasphemorhyperiathihenitope = E100#{&#+1}#^#100 [φ(ω, 1, ω, 0)]
(961) blasphemorhyperiathiheniarxitri = E100#{&#+1}#{&#+1}#100 [φ(ω, 1, φ(ω, 1, 0, 0), 0)]
(962) blasphemorhyperiathideuterus = E100#{&#+2}#100 [φ(ω, 2, 0, 0)]
(963) blasphemorhyperiathitritus = E100#{&#+3}#100 [φ(ω, 3, 0, 0)]
(964) blasphemorhyperiathitetertus = E100#{&#+4}#100 [φ(ω, 4, 0, 0)]
(965) blasphemorhyperiathihyperius = E100#{&#+#}#100 [φ(ω, ω, 0, 0)]
(966) blasphemorhyperiathi-tethrathus = E100#{&#+#^^#}#100 [φ(ω, ε0, 0, 0)]
(967) blasphemorhyperiathi-blasphemorgulus = E100#{&#+#{&}#}#100 [φ(ω, φ(1, 0, 0, 0), 0, 0)]
(968) blasphemorhyperiathiversiadyon = E100#{&#+#{&#}#}#100 [φ(ω, φ(ω, 0, 0, 0), 0, 0)]
(969) blasphemorhyperiathiversiatrion = E100#{&#+#{&#+#{&#}#}#}#100 [φ(ω, φ(ω, φ(ω, 0, 0, 0), 0, 0), 0, 0)]
...
(970) blasphemorhyperiathiblasphemus = E100#{&#+&}#100 [φ(ω + 1, 0, 0, 0)]
(971) blasphemorhyperiathiblasphemicross = E100#{&#+&}##100 [φ(ω + 1, 0, 1, 0)]
(972) blasphemorhyperiathiblasphemitope = E100#{&#+&}#^#100 [φ(ω + 1, 0, ω, 0)]
(973) blasphemorhyperiathiblasphemiarxitri = E100#{&#+&}#{&#+&}#100 [φ(ω + 1, 0, φ(ω + 1, 0, 0, 0), 0)]
(974) blasphemorhyperiathiblasphemihenus = E100#{&#+&+1}#100 [φ(ω + 1, 1, 0, 0)]
(975) blasphemorhyperiathiblasphemihyperius = E100#{&#+&+#}#100 [φ(ω + 1, ω, 0, 0)]
(976) blasphemorhyperiathiblasphemiversiadyon = E100#{&#+&+#{&#+&}#}#100 [φ(ω + 1, φ(ω + 1, ω, 0, 0), 0, 0)]
(977) blasphemorhyperiathiblasphemideus = E100#{&#+&+&}#100 [φ(ω + 2, 0, 0, 0)]
(978) blasphemorhyperiathiblasphemideusihyperius = E100#{&#+&+&+#}#100 [φ(ω + 2, ω, 0, 0)]
(979) blasphemorhyperiathiblasphemitruce = E100#{&#+&+&+&}#100 [φ(ω + 3, 0, 0, 0)]
(980) blasphemorhyperiathiblasphemiquad = E100#{&#+&+&+&+&}#100 [φ(ω + 4, 0, 0, 0)]
...
(981) blasphemorhyperiathideus = E100#{&#+&#}#100 [φ(ω·2, 0, 0, 0)]
(982) blasphemorhyperiathideusidubbus = E100(#{&#+&#}#){&#+&#}#100 [φ(ω·2, 0, 0, 1)]
(983) blasphemorhyperiathideusiterator = E100#{&#+&#}#>#100 [φ(ω·2, 0, 0, ω)]
(984) dustaculated-blasphemorhyperiathideus = E100#{&#+&#}#>#{&#+&#}#100 [φ(ω·2, 0, 0, φ(ω·2, 0, 0, 0))]
(985) blasphemorhyperiathideusicross = E100#{&#+&#}##100 [φ(ω·2, 0, 1, 0)]
(986) blasphemorhyperiathideusitope = E100#{&#+&#}#^#100 [φ(ω·2, 0, ω, 0)]
(987) blasphemorhyperiathideusiarxitri = E100#{&#+&#}#{&#+&#}#100 [φ(ω·2, 0, φ(ω·2, 0, 0, 0), 0)]
(988) blasphemorhyperiathideusihenus = E100#{&#+&#+1}#100 [φ(ω·2, 1, 0, 0)]
(989) blasphemorhyperiathideusideuterus = E100#{&#+&#+2}#100 [φ(ω·2, 2, 0, 0)]
(990) blasphemorhyperiathideusihyperius = E100#{&#+&#+#}#100 [φ(ω·2, ω, 0, 0)]
(991) blasphemorhyperiathideusiversiadyon = E100#{&#+&#+#{&#+&#}#}#100 [φ(ω·2, φ(ω·2, 0, 0, 0), 0, 0)]
(992) blasphemorhyperiathideusiblasphemus = E100#{&#+&#+&}#100 [φ(ω·2 + 1, 0, 0, 0)]
(993) blasphemorhyperiathideusiblasphemideus = E100#{&#+&#+&+&}#100 [φ(ω·2 + 2, 0, 0, 0)]
(994) blasphemorhyperiathitruce = E100#{&#+&#+&#}#100 [φ(ω·3, 0, 0, 0)]
(995) blasphemorhyperiathitrucihenus = E100#{&#+&#+&#+1}#100 [φ(ω·3, 1, 0, 0)]
(996) blasphemorhyperiathitruciblasphemus = E100#{&#+&#+&#+&}#100 [φ(ω·3 + 1, 0, 0, 0)]
(997) blasphemorhyperiathiquad = E100#{&#+&#+&#+&#}#100 [φ(ω·4, 0, 0, 0)]
(998) blasphemorhyperiathiquid = E100#{&#+&#+&#+&#+&#}#100 [φ(ω·5, 0, 0, 0)]
(999) blasphemorhyperiathisid = E100#{&#+&#+&#+&#+&#+&#}#100 [φ(ω·6, 0, 0, 0)]
...
(1000) blasphemordeuterhyperiath = E100#{&##}#100 [φ(ω^2, 0, 0, 0)]
(1001) terrible blasphemordeuterhyperiath = E100(#{&##}#)^^#100 [ε(φ(ω^2, 0, 0, 0) + 1)]
(1002) blasphemous blasphemordeuterhyperiath = E100(#{&##}#){&}#100 [φ(1, 0, 0, φ(ω^2, 0, 0, 0) + 1)]
(1003) blasphemorhyperiated blasphemordeuterhyperiath = E100(#{&##}#){&#}#100 [φ(ω, 0, 0, φ(ω^2, 0, 0, 0) + 1)]
(1004) blasphemordeuterhyperiathidubbus = E100(#{&##}#){&##}#100 [φ(ω^2, 0, 0, 1)]
(1005) blasphemordeuterhyperiathiterator = E100#{&##}#>#100 [φ(ω^2, 0, 0, ω)]
(1006) dustaculated-blasphemordeuterhyperiath = E100#{&##}#>#100 [φ(ω^2, 0, 0, φ(ω^2, 0, 0, 0))]
(1007) blasphemordeuterhyperiathicross = E100#{&##}##100 [φ(ω^2, 0, 1, 0)]
(1008) blasphemordeuterhyperiathicubor = E100#{&##}###100 [φ(ω^2, 0, 2, 0)]
(1009) blasphemordeuterhyperiathitope = E100#{&##}#^#100 [φ(ω^2, 0, ω, 0)]
(1010) blasphemordeuterhyperiathiarxitri = E100#{&##}#{&##}#100 [φ(ω^2, 0, φ(ω^2, 0, 0, 0), 0)]
(1011) blasphemordeuterhyperiathihenus = E100#{&##+1}#100 [φ(ω^2, 1, 0, 0)]
(1012) blasphemordeuterhyperiathihyperius = E100#{&##+#}#100 [φ(ω^2, ω, 0, 0)]
(1013) blasphemordeuterhyperiathiversiadyon = E100#{&##+#{&##}#}#100 [φ(ω^2, φ(ω^2, 0, 0, 0), 0, 0)]
(1014) blasphemordeuterhyperiathiblasphemus = E100#{&##+&}#100 [φ(ω^2 + 1, 0, 0, 0)]
(1015) blasphemordeuterhyperiathiblasphemideus = E100#{&##+&+&}#100 [φ(ω^2 + 2, 0, 0, 0)]
(1016) blasphemordeuterhyperiathiblasphemihyperiath = E100#{&##+&#}#100 [φ(ω^2 + ω, 0, 0, 0)]
(1017) blasphemordeuterhyperiathiblasphemihyperiathiblasphemus = E100#{&##+&#+&}#100 [φ(ω^2 + ω + 1, 0, 0, 0)]
(1018) blasphemordeuterhyperiathiblasphemihyperiathideus = E100#{&##+&#+&#}#100 [φ(ω^2 + ω·2, 0, 0, 0)]
(1019) blasphemordeuterhyperiathideus = E100#{&##+&##}#100 [φ(ω^2·2, 0, 0, 0)]
(1020) blasphemordeuterhyperiathideusiblasphemus = E100#{&##+&##+&}#100 [φ(ω^2·2 + 1, 0, 0, 0)]
(1021) blasphemordeuterhyperiathideusiblasphemihyperiath = E100#{&##+&##+&#}#100 [φ(ω^2·2 + ω, 0, 0, 0)]
(1022) blasphemordeuterhyperiathitruce = E100#{&##+&##+&##}#100 [φ(ω^2·3, 0, 0, 0)]
(1023) blasphemordeuterhyperiathiquad = E100#{&##+&##+&##+&##}#100 [φ(ω^2·4, 0, 0, 0)]
...
(1024) blasphemortritohyperiath = E100#{&###}#100 [φ(ω^3, 0, 0, 0)]
(1025) blasphemortritohyperiathidubbus = E100(#{&###}#){&###}#100 [φ(ω^3, 0, 0, 1)]
(1026) blasphemortritohyperiathiterator = E100#{&###}##100 [φ(ω^3, 0, 0, ω)]
(1027) dustaculated-blasphemortritohyperiath = E100#{&###}#>#{&###}#100 [φ(ω^3, 0, 0, φ(ω^3, 0, 0, 0))]
(1028) blasphemortritohyperiathicross = E100#{&###}##100 [φ(ω^3, 0, 1, 0)]
(1029) blasphemortritohyperiathitope = E100#{&###}#^#100 [φ(ω^3, 0, ω, 0)]
(1030) blasphemortritohyperiathiarxitri = E100#{&###}#{&###}#100 [φ(ω^3, 0, φ(ω^3, 0, 0, 0), 0)]
(1031) blasphemortritohyperiathihenus = E100#{&###+1}#100 [φ(ω^3, 1, 0, 0)]
(1032) blasphemortritohyperiathiblasphemus = E100#{&###+&}#100 [φ(ω^3 + 1, 0, 0, 0)]
(1033) blasphemortritohyperiathiblasphemihyperiath = E100#{&###+&#}#100 [φ(ω^3 + ω, 0, 0, 0)]
(1034) blasphemortritohyperiathiblasphemideuterhyperiath = E100#{&###+&##}#100 [φ(ω^3 + ω^2, 0, 0, 0)]
(1035) blasphemortritohyperiathideus = E100#{&###+&###}#100 [φ(ω^3·2, 0, 0, 0)]
(1036) blasphemortritohyperiathitruce = E100#{&###+&###+&###}#100 [φ(ω^3·3, 0, 0, 0)]
...
(1037) blasphemortetertohyperiath = E100#{&####}#100 [φ(ω^4, 0, 0, 0)]
(1038) blasphemortetertohyperiathicross = E100#{&####}##100 [φ(ω^4, 0, 1, 0)]
(1039) blasphemortetertohyperiathihenus = E100#{&####+1}#100 [φ(ω^4, 1, 0, 0)]
(1040) blasphemortetertohyperiathiblasphemus = E100#{&####+&}#100 [φ(ω^4 + 1, 0, 0, 0)]
(1041) blasphemortetertohyperiathideus = E100#{&####+&####}#100 [φ(ω^4·2, 0, 0, 0)]
(1042) blasphemorpeptohyperiath = E100#{&#####}#100 [φ(ω^5, 0, 0, 0)]
(1043) blasphemorpeptohyperiathideus = E100#{&#####+&#####}#100 [φ(ω^5·2, 0, 0, 0)]
(1044) blasphemor-extohyperiath = E100#{&######}#100 = E100#{&#^#}#6 [φ(ω^6, 0, 0, 0)]
(1045) blasphemor-eptohyperiath = E100#{&#######}#100 = E100#{&#^#}#7 [φ(ω^7, 0, 0, 0)]
(1046) blasphemor-ogdohyperiath = E100#{&########}#100 = E100#{&#^#}#8 [φ(ω^8, 0, 0, 0)]
(1047) blasphemor-entohyperiath = E100#{&#########}#100 = E100#{&#^#}#9 [φ(ω^9, 0, 0, 0)]
(1048) blasphemordekatohyperiath = E100#{&##########}#100 = E100#{&#^#}#10 [φ(ω^10, 0, 0, 0)]
...
Now we use the "-percarta-" infix to connect the Collapsing-E structures inside the curly brackets. This is similar to "-carta-" for the base level.
(1049) blasphemoriasi-godgahlah = E100#{&#^#}#100 [φ(ω^ω, 0, 0, 0)]
(1050) blasphemoriasi-godgahlah-cruxate = E100#{&#^#}#100 [φ(ω^ω, 0, 1, 0)]
(1051) blasphemoriasi-godgahlah-henate = E100#{&#^#+1}#100 [φ(ω^ω, 1, 0, 0)]
(1052) blasphemoriasi-godgahlah-percarta-blasphemorgulus = E100#{&#^#+&}#100 [φ(ω^ω + 1, 0, 0, 0)]
(1053) blasphemoriasi-godgahlah-percarta-blasphemorhyperiath = E100#{&#^#+&#}#100 [φ(ω^ω + ω, 0, 0, 0)]
(1054) blasphemoriasi-godgahlah-perdeuteronate = E100#{&#^#+&#^#}#100 [φ(ω^ω·2, 0, 0, 0)]
(1055) blasphemoriasi-godgahlah-pertritonate = E100#{&#^#+&#^#+&#^#}#100 [φ(ω^ω·3, 0, 0, 0)]
(1056) blasphemoriasi-godgoldgahlah = E100#{&#^#*#}#100 [φ(ω^(ω + 1), 0, 0, 0)]
(1057) blasphemoriasi-godgoldgahlah-perdeuteronate = E100#{&#^#*#}#100 [φ(ω^(ω + 1)·2, 0, 0, 0)]
(1058) blasphemoriasi-goddeutergoldgahlah = E100#{&#^#*##}#100 [φ(ω^(ω + 2), 0, 0, 0)]
(1059) blasphemoriasi-godtritogoldgahlah = E100#{&#^#*##}#100 [φ(ω^(ω + 3), 0, 0, 0)]
(1060) blasphemoriasi-godtetertogoldgahlah = E100#{&#^#*##}#100 [φ(ω^(ω + 4), 0, 0, 0)]
(1061) blasphemoriasi-deutero-godgahlah = E100#{&#^#*#^#}#100 [φ(ω^(ω·2), 0, 0, 0)]
(1062) blasphemoriasi-deutero-godgahlah-perdeuteronate = E100#{&#^#*#^#}#100 [φ(ω^(ω·2)·2, 0, 0, 0)]
(1063) blasphemoriasi-deutero-godgoldgahlah = E100#{&#^#*#^#*#}#100 [φ(ω^(ω·2 + 1), 0, 0, 0)]
(1064) blasphemoriasi-deutero-goddeutergoldgahlah = E100#{&#^#*#^#*##}#100 [φ(ω^(ω·2 + 2), 0, 0, 0)]
(1065) blasphemoriasi-trito-godgahlah = E100#{&#^#*#^#*#^#}#100 [φ(ω^(ω·3), 0, 0, 0)]
(1066) blasphemoriasi-trito-godgoldgahlah = E100#{&#^#*#^#*#^#*#}#100 [φ(ω^(ω·3 + 1), 0, 0, 0)]
(1067) blasphemoriasi-teterto-godgahlah = E100#{&#^#*#^#*#^#*#^#}#100 [φ(ω^(ω·4), 0, 0, 0)]
(1068) blasphemoriasi-pepto-godgahlah = E100#{&#^#*#^#*#^#*#^#*#^#}#100 [φ(ω^(ω·5), 0, 0, 0)]
(1069) blasphemoriasi-gridgahlah = E100#{&#^##}#100 [φ(ω^ω^2, 0, 0, 0)]
(1070) blasphemoriasi-gridgoldgahlah = E100#{&#^##*#}#100 [φ(ω^(ω^2 + 1), 0, 0, 0)]
(1071) blasphemoriasi-gridgodgahlah = E100#{&#^##*#^#}#100 [φ(ω^(ω^2 + ω), 0, 0, 0)]
(1072) blasphemoriasi-deutero-gridgahlah = E100#{&#^##*#^##}#100 [φ(ω^(ω^2·2), 0, 0, 0)]
(1073) blasphemoriasi-trito-gridgahlah = E100#{&#^##*#^##*#^##}#100 [φ(ω^(ω^2·3), 0, 0, 0)]
(1074) blasphemoriasi-kubikahlah = E100#{&#^###}#100 [φ(ω^ω^3, 0, 0, 0)]
(1075) blasphemoriasi-deutero-kubikahlah = E100#{&#^###*#^###}#100 [φ(ω^(ω^3·2), 0, 0, 0)]
(1076) blasphemoriasi-quarticahlah = E100#{&#^####}#100 [φ(ω^ω^4, 0, 0, 0)]
(1077) blasphemoriasi-quinticahlah = E100#{&#^#####}#100 [φ(ω^ω^5, 0, 0, 0)]
...
(1078) blasphemoriasi-godgathor = E100#{&#^#^#}#100 [φ(ω^ω^ω, 0, 0, 0)]
(1079) blasphemoriasi-deutero-godgathor = E100#{&#^#^#*#^#^#}#100 [φ(ω^(ω^ω·2), 0, 0, 0)]
(1080) blasphemoriasi-godgathorfact = E100#{&#^(#^#*#)}#100 [φ(ω^ω^(ω + 1), 0, 0, 0)]
(1081) blasphemoriasi-godgridgathor = E100#{&#^(#^#*##)}#100 [φ(ω^ω^(ω + 2), 0, 0, 0)]
(1082) blasphemoriasi-godgathordeus = E100#{&#^(#^#*#^#)}#100 [φ(ω^ω^(ω·2), 0, 0, 0)]
(1083) blasphemoriasi-godgathortruce = E100#{&#^(#^#*#^#*#^#)}#100 [φ(ω^ω^(ω·3), 0, 0, 0)]
(1084) blasphemoriasi-gralgathor = E100#{&#^#^##}#100 [φ(ω^ω^ω^2, 0, 0, 0)]
(1085) blasphemoriasi-gralgathordeus = E100#{&#^(#^##*#^##)}#100 [φ(ω^ω^(ω^2·2), 0, 0, 0)]
(1086) blasphemoriasi-thraelgathor = E100#{&#^#^###}#100 [φ(ω^ω^ω^3, 0, 0, 0)]
(1087) blasphemoriasi-terinngathor = E100#{&#^#^####}#100 [φ(ω^ω^ω^4, 0, 0, 0)]
(1088) blasphemoriasi-godtothol = E100#{&#^#^#^#}#100 [φ(ω^ω^ω^ω, 0, 0, 0)]
(1089) blasphemoriasi-godtotholfactitrece = E100#{&#^#^(#^#*#)}#100 [φ(ω^ω^ω^(ω + 1), 0, 0, 0)]
(1090) blasphemoriasi-godtotholdeusitrece = E100#{&#^#^(#^#*#^#)}#100 [φ(ω^ω^ω^(ω·2), 0, 0, 0)]
(1091) blasphemoriasi-graltothol = E100#{&#^#^#^##}#100 [φ(ω^ω^ω^ω^2, 0, 0, 0)]
(1092) blasphemoriasi-thraeltothol = E100#{&#^#^#^##}#100 [φ(ω^ω^ω^ω^3, 0, 0, 0)]
(1093) blasphemoriasi-godtertol = E100#{&#^#^#^#^#}#100 [φ(ω^ω^ω^ω^ω, 0, 0, 0)]
(1094) blasphemoriasi-graltertol = E100#{&#^#^#^#^##}#100 [φ(ω^ω^ω^ω^ω^2, 0, 0, 0)]
(1095) blasphemoriasi-godtopol = E100#{&#^#^#^#^#^#}#100 [φ(ω^ω^ω^ω^ω^ω, 0, 0, 0)]
(1096) blasphemoriasi-godhathor = E100#{&#^#^#^#^#^#^#}#100
= E100#{&#^^#}#7 [φ(ω^ω^ω^ω^ω^ω^ω, 0, 0, 0)]
(1097) blasphemoriasi-godheptol = E100#{&#^#^#^#^#^#^#^#}#100
= E100#{&#^^#}#8 [φ(ω^ω^ω^ω^ω^ω^ω^ω, 0, 0, 0)]
(1098) blasphemoriasi-godoctol = E100#{&#^#^#^#^#^#^#^#^#}#100
= E100#{&#^^#}#9 [φ(ω^ω^ω^ω^ω^ω^ω^ω^ω, 0, 0, 0)]
(1099) blasphemoriasi-godentol = E100#{&#^#^#^#^#^#^#^#^#^#}#100
= E100#{&#^^#}#10 [φ(ω^ω^ω^ω^ω^ω^ω^ω^ω^ω, 0, 0, 0)]
(1100) blasphemoriasi-goddekathol = E100#{&#^#^#^#^#^#^#^#^#^#^#}#100
= E100#{&#^^#}#11 [φ(ω^ω^ω^ω^ω^ω^ω^ω^ω^ω^ω, 0, 0, 0)]
...
(1101) blasphemoriasi-tethrathoth = E100#{&#^^#}#100 [φ(ε0, 0, 0, 0)]
(1102) blasphemoriasi-tethrathoth-percarta-blasphemorgulus = E100#{&#^^#+&}#100 [φ(ε0 + 1, 0, 0, 0)]
(1103) blasphemoriasi-tethrathoth-perdeuteronate = E100#{&#^^#+&#^^#}#100 [φ(ε0·2, 0, 0, 0)]
Here, the modifier "-propinquum" acts very similarly to that of "-propinquus", both mean the Latin for "closing", but it's in neuter gender form that is used inside curly brackets.
(1104) blasphemoriasi-tethrathoth-by-hyperion-propinquum = E100#{&#^^#*#}#100 [φ(ε0·ω, 0, 0, 0)]
(1105) blasphemoriasi-deutero-tethrathoth = E100#{&#^^#*#^^#}#100 [φ(ε0^2, 0, 0, 0)]
(1106) blasphemoriasi-tethrafact = E100#{&(#^^#)^#}#100 [φ(ε0^ω, 0, 0, 0)]
(1107) blasphemoriasi-tethraduliath = E100#{&(#^^#)^(#^^#)}#100 [φ(ε0^ε0, 0, 0, 0)]
(1108) blasphemoriasi-territethrathoth = E100#{&(#^^#)^^#}#100 [φ(ε1, 0, 0, 0)]
(1109) blasphemoriasi-territerritethrathoth = E100#{&((#^^#)^^#)^^#}#100 [φ(ε2, 0, 0, 0)]
(1110) blasphemoriasi-tethriterator = E100#{&#^^#>#}#100 [φ(ε(ω), 0, 0, 0)]
(1111) blasphemoriasi-territethriterator = E100#{&(#^^#>#)^^#}#100 [φ(ε(ω + 1), 0, 0, 0)]
(1112) blasphemoriasi-tethriditerator = E100#{&#^^#>(#+#)}#100 [φ(ε(ω·2), 0, 0, 0)]
(1113) blasphemoriasi-tethrigriditerator = E100#{&#^^#>##}#100 [φ(ε(ω^2), 0, 0, 0)]
(1114) blasphemoriasi-tethrispatialator = E100#{&#^^#>#^#}#100 [φ(ε(ω^ω), 0, 0, 0)]
(1115) blasphemoriasi-dustaculated-tethrathoth = E100#{&#^^#>#^^#}#100 [φ(ε(ε0), 0, 0, 0)]
(1116) blasphemoriasi-tristaculated-tethrathoth = E100#{&#^^#>#^^#>#^^#}#100 [φ(ε(ε(ε0)), 0, 0, 0)]
...
(1117) blasphemoriasi-tethracross = E100#{&#^^##}#100 [φ(ζ0, 0, 0, 0)]
(1118) blasphemoriasi-territethracross = E100#{&(#^^##)^^#}#100 [φ(ε(ζ0 + 1), 0, 0, 0)]
(1119) blasphemoriasi-secundotethrated-tethracross = E100#{&(#^^##)^^##}#100 [φ(ζ1, 0, 0, 0)]
(1120) blasphemoriasi-tethritercross = E100#{&#^^##>#}#100 [φ(ζ(ω), 0, 0, 0)]
(1121) blasphemoriasi-dustaculated-tethracross = E100#{&#^^##>#}#100 [φ(ζ(ζ0), 0, 0, 0)]
(1122) blasphemoriasi-tethracubor = E100#{&#^^###}#100 [φ(η0, 0, 0, 0)]
(1123) blasphemoriasi-tethritercubor = E100#{&#^^###>#}#100 [φ(η(ω), 0, 0, 0)]
(1124) blasphemoriasi-tethrateron = E100#{&#^^####}#100 [φ(φ(4, 0), 0, 0, 0)]
(1125) blasphemoriasi-tethrapeton = E100#{&#^^####}#100 [φ(φ(5, 0), 0, 0, 0)]
(1126) blasphemoriasi-tethratope = E100#{&#^^#^#}#100 [φ(φ(ω, 0), 0, 0, 0)]
(1127) blasphemoriasi-tethratopothoth = E100#{&#^^(#^#*#)}#100 [φ(φ(ω + 1, 0), 0, 0, 0)]
(1128) blasphemoriasi-tethratopodeus = E100#{&#^^(#^#*#^#)}#100 [φ(φ(ω·2, 0), 0, 0, 0)]
(1129) blasphemoriasi-tethralattitope = E100#{&#^^#^##}#100 [φ(φ(ω^2, 0), 0, 0, 0)]
(1130) blasphemoriasi-tethracubitope = E100#{&#^^#^###}#100 [φ(φ(ω^3, 0), 0, 0, 0)]
(1131) blasphemoriasi-tethraspatialtope = E100#{&#^^#^#^#}#100 [φ(φ(ω^ω, 0), 0, 0, 0)]
(1132) blasphemoriasi-tethrasuperspatialtope = E100#{&#^^#^#^#^#}#100 [φ(φ(ω^ω^ω, 0), 0, 0, 0)]
(1133) blasphemoriasi-tethrarxitri = E100#{&#^^#^^#}#100 [φ(φ(ε0, 0), 0, 0, 0)]
(1134) blasphemoriasi-tethrarxitet = E100#{&#^^#^^#^^#}#100 [φ(φ(φ(ε0, 0), 0), 0, 0, 0)]
...
(1135) blasphemoriasi-pentacthulhum = E100#{&#^^^#}#100 [φ(Γ0, 0, 0, 0)]
(1136) blasphemoriasi-pentacthulcross = E100#{&#^^^##}#100 [φ(φ(1, 1, 0), 0, 0, 0)]
(1137) blasphemoriasi-pentacthultope = E100#{&#^^^#^#}#100 [φ(φ(1, ω, 0), 0, 0, 0)]
(1138) blasphemoriasi-pentacthularxitri = E100#{&#^^^#^^^#}#100 [φ(φ(1, Γ0, 0), 0, 0, 0)]
(1139) blasphemoriasi-hexacthulhum = E100#{&#^^^^#}#100 [φ(φ(2, 0, 0), 0, 0, 0)]
(1140) blasphemoriasi-heptacthulhum = E100#{&#^^^^^#}#100 [φ(φ(3, 0, 0), 0, 0, 0)]
(1141) blasphemoriasi-godsgodgulus = E100#{&#{#}#}#100 [φ(φ(ω, 0, 0), 0, 0, 0)]
(1142) blasphemoriasi-godsgodgultaxitri = E100#{&#{#{#}#}#}#100 [φ(φ(φ(ω, 0, 0), 0, 0), 0, 0, 0)]
(1143) blasphemoriasi-godsgodgultaxitet = E100#{&#{#{#{#}#}#}#}#100 [φ(φ(φ(φ(ω, 0, 0), 0, 0), 0, 0), 0, 0, 0)]
...
(1144) blasphemoriadeuon = E100#{&#{&}#}#100 [φ(φ(1, 0, 0, 0), 0, 0, 0)]
(*formerly blasphemoriadeusus)
(1145) blasphemoriadeuoncruxate = E100#{&#{&}#}##100 [φ(φ(1, 0, 0, 0), 0, 1, 0)]
(1146) blasphemoriadeuonhenate = E100#{&#{&}#+1}#100 [φ(φ(1, 0, 0, 0), 1, 0, 0)]
(1146) blasphemoriadeuon-percarta-blasphemorgulus = E100#{&#{&}#+&}#100 [φ(φ(1, 0, 0, 0) + 1, 0, 0, 0)]
(1147) blasphemoriadeuon-perdeuterate = E100#{&#{&}#+&#{&}#}#100 [φ(φ(1, 0, 0, 0)·2, 0, 0, 0)]
(1148) blasphemoriasi-blasphemorgulus-by-hyperion-propinquum = E100#{&#{&}#*#}#100 [φ(φ(1, 0, 0, 0)·ω, 0, 0, 0)]
(1149) blasphemoriasi-deutero-blasphemorgulus = E100#{&#{&}#*#{&}#}#100 [φ(φ(1, 0, 0, 0)^2, 0, 0, 0)]
(1150) blasphemoriasi-blasphemorgulfact = E100#{&(#{&}#)^#}#100 [φ(φ(1, 0, 0, 0)^ω, 0, 0, 0)]
(1151) blasphemoriasi-dutetrated-blasphemorgulus = E100#{&(#{&}#)^(#{&}#)}#100 [φ(φ(1, 0, 0, 0)^φ(1, 0, 0, 0), 0, 0, 0)]
(1152) blasphemoriasi-terriblasphemorgulus = E100#{&(#{&}#)^^#}#100 [φ(ε(φ(1, 0, 0, 0) + 1), 0, 0, 0)]
(1153) blasphemoriasi-terrisquared-blasphemorgulus = E100#{&(#{&}#)^^##}#100 [φ(ζ(φ(1, 0, 0, 0) + 1), 0, 0, 0)]
(1154) blasphemoriasi-horriblasphemorgulus = E100#{&(#{&}#)^^^#}#100 [φ(Γ(φ(1, 0, 0, 0) + 1), 0, 0, 0)]
(1155) blasphemoriasi-godsgodgulated-blasphemorgulus = E100#{&(#{&}#)^^^#}#100 [φ(φ(ω, 0, φ(1, 0, 0, 0) + 1), 0, 0, 0)]
(1156) blasphemoriasi-blasphemorgulnumus-blasphemorgulus = E100#{&(#{&}#){#{&}#}#}#100 [φ(φ(φ(1, 0, 0, 0), 0, 1), 0, 0, 0)]
(1157) blasphemoriasi-tweilasphemorgue = E100#{&(#{&}#){&}#}#100 [φ(φ(1, 0, 0, 1), 0, 0, 0)]
(1158) blasphemoriasi-blasphemorguliterator = E100#{&#{&}#>#}#100 [φ(φ(1, 0, 0, ω), 0, 0, 0)]
(1159) blasphemoriasi-dustaculated-blasphemorgulus = E100#{&#{&}#>#{&}#}#100 [φ(φ(1, 0, 0, φ(1, 0, 0, 0)), 0, 0, 0)]
(1160) blasphemoriasi-blasphemorgulcross = E100#{&#{&}##}#100 [φ(φ(1, 0, 1, 0), 0, 0, 0)]
(1161) blasphemoriasi-blasphemorgulcubor = E100#{&#{&}###}#100 [φ(φ(1, 0, 2, 0), 0, 0, 0)]
(1162) blasphemoriasi-blasphemorgultope = E100#{&#{&}#^#}#100 [φ(φ(1, 0, ω, 0), 0, 0, 0)]
(1163) blasphemoriasi-blasphemorgularxitri = E100#{&#{&}#{&}#}#100 [φ(φ(1, 0, φ(1, 0, 0, 0), 0), 0, 0, 0)]
(1164) blasphemoriasi-blasphemorgulhenus = E100#{&#{&+1}#}#100 [φ(φ(1, 1, 0, 0), 0, 0, 0)]
(1165) blasphemoriasi-blasphemorguldeuterus = E100#{&#{&+2}#}#100 [φ(φ(1, 2, 0, 0), 0, 0, 0)]
(1166) blasphemoriasi-blasphemorgulhyperius = E100#{&#{&+#}#}#100 [φ(φ(1, ω, 0, 0), 0, 0, 0)]
(1167) blasphemoriasi-blasphemorgulversiadyon = E100#{&#{&+#}#}#100 [φ(φ(1, φ(1, 0, 0, 0), 0, 0), 0, 0, 0)]
(1168) blasphemoriasi-blasphemordeus = E100#{&#{&+&}#}#100 [φ(φ(2, 0, 0, 0), 0, 0, 0)]
(1169) blasphemoriasi-blasphemortruce = E100#{&#{&+&+&}#}#100 [φ(φ(3, 0, 0, 0), 0, 0, 0)]
(1170) blasphemoriasi-blasphemorhyperiath = E100#{&#{&#}#}#100 [φ(φ(ω, 0, 0, 0), 0, 0, 0)]
(1171) blasphemoriasi-blasphemorhyperiathiblasphemus = E100#{&#{&#+&}#}#100 [φ(φ(ω + 1, 0, 0, 0), 0, 0, 0)]
(1172) blasphemoriasi-blasphemorhyperiathideus = E100#{&#{&#+&#}#}#100 [φ(φ(ω·2, 0, 0, 0), 0, 0, 0)]
(1173) blasphemoriasi-blasphemordeuterhyperiath = E100#{&#{&##}#}#100 [φ(φ(ω^2, 0, 0, 0), 0, 0, 0)]
(1174) blasphemoriasi-blasphemortritohyperiath = E100#{&#{&###}#}#100 [φ(φ(ω^3, 0, 0, 0), 0, 0, 0)]
(1175) blasphemoriasi-blasphemoriasi-godgahlah = E100#{&#{&#^#}#}#100 [φ(φ(ω^ω, 0, 0, 0), 0, 0, 0)]
(1176) blasphemoriasi-blasphemoriasi-gridgahlah = E100#{&#{&#^##}#}#100 [φ(φ(ω^ω^2, 0, 0, 0), 0, 0, 0)]
(1177) blasphemoriasi-blasphemoriasi-godgathor = E100#{&#{&#^#}#}#100 [φ(φ(ω^ω^ω, 0, 0, 0), 0, 0, 0)]
(1178) blasphemoriasi-blasphemoriasi-godtothol = E100#{&#{&#^#}#}#100 [φ(φ(ω^ω^ω^ω, 0, 0, 0), 0, 0, 0)]
(1179) blasphemoriasi-blasphemoriasi-tethrathoth = E100#{&#{&#^^#}#}#100 [φ(φ(ε0, 0, 0, 0), 0, 0, 0)]
(1180) blasphemoriasi-blasphemoriasi-tethracross = E100#{&#{&#^^##}#}#100 [φ(φ(ζ0, 0, 0, 0), 0, 0, 0)]
(1181) blasphemoriasi-blasphemoriasi-pentacthulhum = E100#{&#{&#^^^#}#}#100 [φ(φ(Γ0, 0, 0, 0), 0, 0, 0)]
(1182) blasphemoriasi-blasphemoriasi-godsgodgulus = E100#{&#{&#{#}#}#}#100 [φ(φ(φ(ω, 0, 0), 0, 0, 0), 0, 0, 0)]
...
(1183) blasphemoriatreuon = E100#{&#{&#{&}#}#}#100 [φ(φ(φ(1, 0, 0, 0), 0, 0, 0), 0, 0, 0)]
(*formerly blasphemoriatreusus)
(1184) dublasphemoriasi-tweilasphemorgue = E100#{&#{&(#{&}#){&}#}#}#100 [φ(φ(φ(1, 0, 0, 1), 0, 0, 0), 0, 0, 0)]
(1185) dublasphemoriasi-blasphemorguliterator = E100#{&#{&#{&}#>#}#}#100 [φ(φ(φ(1, 0, 0, ω), 0, 0, 0), 0, 0, 0)]
(1186) dublasphemoriasi-dustaculated-blasphemorgulus= E100#{&#{&#{&}#>#{&}#}#}#100 [φ(φ(φ(1, 0, 0, φ(1, 0, 0, 0)), 0, 0, 0), 0, 0, 0)]
(1187) dublasphemoriasi-blasphemorgulcross = E100#{&#{&#{&}##}#}#100 [φ(φ(φ(1, 0, 1, 0), 0, 0, 0), 0, 0, 0)]
(1188) dublasphemoriasi-blasphemorgultope = E100#{&#{&#{&}#^#}#}#100 [φ(φ(φ(1, 0, ω, 0), 0, 0, 0), 0, 0, 0)]
(1189) dublasphemoriasi-blasphemorgularxitri = E100#{&#{&#{&}#{&}#}#}#100 [φ(φ(φ(1, 0, φ(1, 0, 0, 0), 0), 0, 0, 0), 0, 0, 0)]
(1190) dublasphemoriasi-blasphemorgulhenus = E100#{&#{&#{&+1}#}#}#100 [φ(φ(φ(1, 1, 0, 0), 0, 0, 0), 0, 0, 0)]
(1191) dublasphemoriasi-blasphemordeus = E100#{&#{&#{&+&}#}#}#100 [φ(φ(φ(2, 0, 0, 0), 0, 0, 0), 0, 0, 0)]
(1192) dublasphemoriasi-blasphemorhyperiath = E100#{&#{&#{&#}#}#}#100 [φ(φ(φ(ω, 0, 0, 0), 0, 0, 0), 0, 0, 0)]
(1193) triblasphemoriasi-tethrathoth = E100#{&#{&#{&#^^#}#}#}#100 [φ(φ(φ(ε0, 0, 0, 0), 0, 0, 0), 0, 0, 0)]
(1194) triblasphemoriasi-tethracross = E100#{&#{&#{&#^^##}#}#}#100 [φ(φ(φ(ζ0, 0, 0, 0), 0, 0, 0), 0, 0, 0)]
(1195) triblasphemoriasi-pentacthulhum = E100#{&#{&#{&#^^^#}#}#}#100 [φ(φ(φ(Γ0, 0, 0, 0), 0, 0, 0), 0, 0, 0)]
(1196) triblasphemoriasi-godsgodgulus = E100#{&#{&#{&#{#}#}#}#}#100 [φ(φ(φ(φ(ω, 0, 0), 0, 0, 0), 0, 0, 0), 0, 0, 0)]
...
(1197) blasphemoriaquadreuon = E100#{&#{&#{&#{&}#}#}#}#100 = E100#{&&}#4 [φ(φ(φ(φ(1, 0, 0, 0), 0, 0, 0), 0, 0, 0), 0, 0, 0)]
(1198) triblasphemoriasi-blasphemordeus = E100#{&#{&#{&#{&+&}#}#}#}#100 [φ(φ(φ(φ(2, 0, 0, 0), 0, 0, 0), 0, 0, 0), 0, 0, 0)]
(1199) triblasphemoriasi-blasphemorhyperiath = E100#{&#{&#{&#{&#}#}#}#}#100 [φ(φ(φ(φ(ω, 0, 0, 0), 0, 0, 0), 0, 0, 0), 0, 0, 0)]
(1200) quadriblasphemoriasi-tethrathoth = E100#{&#{&#{&#{&#^^#}#}#}#}#100 [φ(φ(φ(φ(ε0, 0, 0, 0), 0, 0, 0), 0, 0, 0), 0, 0, 0)]
(1201) quadriblasphemoriasi-godsgodgulus = E100#{&#{&#{&#{&#{#}#}#}#}#}#100 [φ(φ(φ(φ(φ(ω, 0, 0), 0, 0, 0), 0, 0, 0), 0, 0, 0), 0, 0, 0)]
(1202) blasphemoriaquinteuon = E100#{&#{&#{&#{&#{&}#}#}#}#}#100 = E100#{&&}#5 [φ(φ(φ(φ(φ(1, 0, 0, 0), 0, 0, 0), 0, 0, 0), 0, 0, 0), 0, 0, 0)]
(1203) quadriblasphemoriasi-blasphemorhyperiath = E100#{&#{&#{&#{&#{&#}#}#}#}#}#100 [φ(φ(φ(φ(φ(ω, 0, 0, 0), 0, 0, 0), 0, 0, 0), 0, 0, 0), 0, 0, 0)]
...
(1204) blasphemoriasexteuon = E100#{&#{&#{&#{&#{&#{&}#}#}#}#}#}#100
= E100#{&&}#6 [φ(φ(φ(φ(φ(φ(1, 0, 0, 0), 0, 0, 0), 0, 0, 0), 0, 0, 0), 0, 0, 0), 0, 0, 0)]
(1205) blasphemoriasepteuon = E100#{&#{&#{&#{&#{&#{&#{&}#}#}#}#}#}#}#100
= E100#{&&}#7 [φ(φ(φ(φ(φ(φ(φ(1, 0, 0, 0), 0, 0, 0), 0, 0, 0), 0, 0, 0), 0, 0, 0), 0, 0, 0), 0, 0, 0)]
(1206) blasphemoriaocteuon = E100#{&#{&#{&#{&#{&#{&#{&#{&}#}#}#}#}#}#}#}#100
= E100#{&&}#8 [φ(φ(φ(φ(φ(φ(φ(φ(1, 0, 0, 0), 0, 0, 0), 0, 0, 0), 0, 0, 0), 0, 0, 0), 0, 0, 0), 0, 0, 0), 0, 0, 0)]
(1207) blasphemorianoneuon = E100#{&#{&#{&#{&#{&#{&#{&#{&#{&}#}#}#}#}#}#}#}#}#100
= E100#{&&}#9 [φ(φ(φ(φ(φ(φ(φ(φ(φ(1, 0, 0, 0), 0, 0, 0), 0, 0, 0), 0, 0, 0), 0, 0, 0), 0, 0, 0), 0, 0, 0), 0, 0, 0), 0, 0, 0)]
(1208) blasphemoriadeceuon = E100#{&#{&#{&#{&#{&#{&#{&#{&#{&#{&}#}#}#}#}#}#}#}#}#}#100
= E100#{&&}#10 [φ(φ(φ(φ(φ(φ(φ(φ(φ(φ(1, 0, 0, 0), 0, 0, 0), 0, 0, 0), 0, 0, 0), 0, 0, 0), 0, 0, 0), 0, 0, 0), 0, 0, 0), 0, 0, 0), 0, 0, 0)]
(1209) blasphemoriaviginteuon = E100#{&&}#20 [φ(1, 0, 0, 0, 0)[20]]
...
Now we passed the major milestone of the Collapsing-E notation!
(1210) squariduagulus = E100#{&&}#100 [φ(1, 0, 0, 0, 0) | ψ(Ω^Ω^3) | #/^#]
= E100#{&#{&#{...&#{&#{&}#}#}#}#}#100
w/ 100 &'s
(also called (1211) blasphemoriacenteuon. Comparable to Saibian's "transmorgrifihgh", defined using his ad hoc extension known as "Solidus-Extended Cascading-E notation", which is the successor of "Hyper-Hyper-Extended Cascading-E notation")