Category 4
Regiment block 5
Members: 120 (59 original + 61 new)
(1579 - 1698)
[Hexation to 5 arrows]
Level 1 | Stage 2-3
Stage 2-3 ~ The fairly low-level large number which breaks the hexational level in the arrow notation.
Next comes the "gigangol" (short for gigantic googol). By definition:
(1579) gigangol ☆★✪ = E100#100#100#100
Gigangol is comparable to and slightly larger than a geegol.
In this way we can now express gigangol in an expanded form:
Even in this expanded form we aren't really getting the full picture. It would have to be expanded further just to see what's going on with the power towers, and forget about imagining how many digits this number has!!!
And yet it is virtually no trouble at all to go much much further. Just define a new prefix, the "-tetrex" and define:
(1580) gigangoltetrex ☆ = E100#100#100#100#2 = E100#100#100#gigangol
(1581) gigangoldutetrex = E100#100#100#100#3 = E100#100#100#gigangoltetrex
(1582) gigangoltritetrex = E100#100#100#100#4
(1583) gigangolquadritetrex = E100#100#100#100#5
(1584) gigangolquintitetrex = E100#100#100#100#6
(1585) gigangolsextitetrex = E100#100#100#100#7
(1586) gigangolseptitetrex = E100#100#100#100#8
(1587) gigangoloctitetrex = E100#100#100#100#9
(1588) gigangolnonitetrex = E100#100#100#100#10
(1589) gigangoldecitetrex = E100#100#100#100#11
...
(1590) gigangolcentitetrex = E100#100#100#100#101
etc.
We can also introduce gigangolding, gigangolchime, gigangolbell, gigangoltoll, gigangolgong, gigangolbong, gigangolthrong, and gigangolgandingan along with their derivatives:
(1591) gigangolding = E500#500#500#500
etc.
(1592) gigangolchime = E1000#1000#1000#1000
(1593) gigangoltetrexichime = E1000#1000#1000#1000#2
(1594) gigangoldutetrexichime = E1000#1000#1000#1000#3
etc.
(1595) gigangolbell = E5000#5000#5000#5000
etc.
(1596) gigangoltoll = E10,000#10,000#10,000#10,000
(1597) gigangoltetrexitoll = E10,000#10,000#10,000#10,000#2
(1598) gigangoldutetrexitoll = E10,000#10,000#10,000#10,000#3
etc.
(1599) gigangolgong = E100,000#100,000#100,000#100,000
(1600) gigangoltetrexigong = E100,000#100,000#100,000#100,000#2
(1601) gigangoldutetrexigong = E100,000#100,000#100,000#100,000#3
(1602) gigangoltritetrexigong = E100,000#100,000#100,000#100,000#4
(1603) gigangolquadritetrexigong = E100,000#100,000#100,000#100,000#5
(1604) gigangolquintitetrexigong = E100,000#100,000#100,000#100,000#6
etc.
Compare to the gigangolgong, the googolgong now looks quite humble indeed, and there is still a lot further to go!
We also have...
(1605) gigangolbong = E100,000,000#100,000,000#100,000,000#100,000,000
(1606) gigangoltetrexibong = E100,000,000#100,000,000#100,000,000#100,000,000#2
(1607) gigangoldutetrexibong = E100,000,000#100,000,000#100,000,000#100,000,000#3
etc.
(1608) gigangolthrong = E100,000,000,000#100,000,000,000#100,000,000,000#100,000,000,000
(1609) gigangoltetrexithrong = E100,000,000,000#100,000,000,000#100,000,000,000#100,000,000,000#2
(1610) gigangoldutetrexithrong = E100,000,000,000#100,000,000,000#100,000,000,000#100,000,000,000#3
etc.
(1611) gigangolgandingan = E100,000,000,000,000#100,000,000,000,000#100,000,000,000,000#100,000,000,000,000
We can also append these suffixes to Bowers' geegol:
(1612) geegolding = E1#1#1#500 = 10^^^^500
(1613) geegolchime = E1#1#1#1000 = 10^^^^1000
(1614) geegolbell = E1#1#1#5000 = 10^^^^5000
(1615) geegoltoll = E1#1#1#10,000 = 10^^^^10,000
(1616) geegolgong = E1#1#1#100,000 = 10^^^^100,000
(1617) geegolbong = E1#1#1#100,000,000 = 10^^^^100,000,000
(1618) geegolthrong = E1#1#1#100,000,000,000 = 10^^^^100,000,000,000
(1619) geegolgandingan = E1#1#1#100,000,000,000,000 = 10^^^^100,000,000,000,000
We can also get more in between cases from further mixing of suffixes and roots ...
(1620) googoltetrex = E100#1#1#1#2
(1621) googolplexitetrex = E100#2#1#1#2
(1622) grangoltetrex = E100#100#1#1#2
(1623) grangoldexitetrex = E100#100#2#1#2
etc.
(1624) gigangolplex = E(E100#100#100#100)
(1625) gigangoldex = E100#(E100#100#100#100)
(1626) gigangolthrex = E100#100#(E100#100#100#100) = E100#100#100#101
Now for the in between cases...
These numbers are between a gigangol and a gigangoltetrex:
(1627) greagoltetrex = E100#100#100#1#2
(1628) greagolthrexitetrex = E100#100#100#2#2
(1629) greagolduthrexitetrex = E100#100#100#3#2
(1630) greagoltrithrexitetrex = E100#100#100#4#2
etc.
These numbers are between a gigangoltetrex and a gigangoldudtetrex:
(1631) greagoldutetrex = E100#100#100#1#3
(1632) greagolthrexidutetrex = E100#100#100#2#3
(1633) greagolduthrexidutetrex = E100#100#100#3#3
etc.
These numbers are between a gigangoldutetrex and a gigangoltritetrex:
(1634) greagoltritetrex = E100#100#100#1#4
(1635) greagolthrexitritetrex = E100#100#100#2#4
(1636) greagolduthrexitritetrex = E100#100#100#3#4
etc.
These numbers are between a gigangoltritetrex and a gigangolquadritetrex:
(1637) greagolquadritetrex = E100#100#100#1#5
(1638) greagolthrexiquadritetrex = E100#100#100#2#5
(1639) greagolduthrexiquadritetrex = E100#100#100#3#5
etc.
These numbers are between a gigangolquadritetrex and a gigangolquintitetrex:
(1640) greagolquintitetrex = E100#100#100#1#6
(1641) greagolthrexiquintitetrex = E100#100#100#2#6
(1642) greagolduthrexiquintitetrex = E100#100#100#3#6
etc.
... and so on ...
We can also have an extension of centillion:
(1643) ecetontetrex = E303#1#1#1#2 = E303#1#1#(E303)
(1644) ecetondutetrex = E303#1#1#1#3
(1645) ecetontritetrex = E303#1#1#1#4
(1646) ecetonquadritetrex = E303#1#1#1#5
(1647) ecetonquintitetrex = E303#1#1#1#6
...
(1648) ecetonplexitetrex = E303#2#1#1#2
(1649) eceto-grangoltetrex = E303#303#1#1#2
(1650) eceto-grangoldexitetrex = E303#303#2#1#2
(1651) eceto-greagoltetrex = E303#303#303#1#2
(1652) eceto-greagolthrexitetrex = E303#303#303#2#2
(1653) eceto-greagolduthrexitetrex = E303#303#303#3#2
...
(1654) eceto-grangoldutetrex = E303#303#1#1#3
(1655) eceto-greagoldutetrex = E303#303#303#1#3
(1656) eceto-greagolthrexidutetrex = E303#303#303#2#3
...
(1657) eceto-greagoltritetrex = E303#303#303#1#4
...
(1658) eceto-gigangol = E303#303#303#303
(1659) eceto-gigangoltetrex = E303#303#303#303#2
(1660) eceto-gigangoldutetrex = E303#303#303#303#3
(1661) eceto-gigangoltritetrex = E303#303#303#303#4
(1662) eceto-gigangolquadritetrex = E303#303#303#303#5
(1663) eceto-gigangolquintitetrex = E303#303#303#303#6
etc.
We can also name some common hexa-towers, using -exaxis:
(1664) tria-exaxis ⍟☆★ = E1#1#1#1#3 = 10^^^^^3 (formerly tria-exaksys)
(1665) tetra-exaxis ⍟☆ = E1#1#1#1#4 = 10^^^^^4 (formerly tetra-exaksys)
(1666) penta-exaxis ⍟☆ = E1#1#1#1#5 = 10^^^^^5
(1667) hexa-exaxis ⍟☆ = E1#1#1#1#6 = 10^^^^^6
(1668) hepta-exaxis ⍟☆ = E1#1#1#1#7 = 10^^^^^7
(1669) octa-exaxis ⍟☆ = E1#1#1#1#8 = 10^^^^^8
(1670) enna-exaxis ⍟☆ = E1#1#1#1#9 = 10^^^^^9
(1671) deka-exaxis ⍟☆★ = E1#1#1#1#10 = 10^^^^^10 (formerly deka-exaksys)
...
(1672) icosa-exaxis = E1#1#1#1#20 = 10^^^^^20
(1673) trianta-exaxis = E1#1#1#1#30 = 10^^^^^30
...
(1674) hecta-exaxis ⍟☆★ = E1#1#1#1#100 = 10^^^^^100 (formerly hecta-exaksys)
...
(1675) chilia-exaxis = E1#1#1#1#1000 = 10^^^^^1000
(1676) myria-exaxis = E1#1#1#1#10,000 = 10^^^^^10,000
(1677) chilia-chilia-exaxis = E1#1#1#1#1,000,000 = 10^^^^^1,000,000
(1678) myria-myria-exaxis = E1#1#1#1#100,000,000 = 10^^^^^100,000,000
(also called (1679) octadia-exaxis)
(1680) sedeniadia-exaxis = E1#1#1#1#10,000,000,000,000,000 = 10^^^^^10^16
...
(1681) dialogia-exaxis = E1#1#1#1#(E10)
(1682) googolia-exaxis = E1#1#1#1#(E100)
(1683) trialogia-exaxis = E1#1#1#1#(E1#3)
(1684) tetralogia-exaxis = E1#1#1#1#(E1#4)
(1685) dekalogia-exaxis = E1#1#1#1#(E1#10)
(1686) hectalogia-exaxis = E1#1#1#1#(E1#100)
(1687) tria-taxia-exaxis = E1#1#1#1#(E1#1#3)
(1688) tetra-taxia-exaxis = E1#1#1#1#(E1#1#4)
(1689) deka-taxia-exaxis = E1#1#1#1#(E1#1#10)
(1690) hecta-taxia-exaxis = E1#1#1#1#(E1#1#100)
(1691) tria-petaxia-exaxis = E1#1#1#1#(E1#1#1#3)
(1692) tetra-petaxia-exaxis = E1#1#1#1#(E1#1#1#4)
(1693) deka-petaxia-exaxis = E1#1#1#1#(E1#1#1#10)
(1694) hecta-petaxia-exaxis = E1#1#1#1#(E1#1#1#100)
(1695) tria-exaxia-exaxis = E1#1#1#1#(E1#1#1#1#3) = E1#1#1#1#3#2
(1696) tetra-exaxia-exaxis = E1#1#1#1#(E1#1#1#1#4) = E1#1#1#1#4#2
(1697) deka-exaxia-exaxis = E1#1#1#1#(E1#1#1#1#10) = E1#1#1#1#10#2 = E1#1#1#1#1#3
(1698) hecta-exaxia-exaxis ✡ = E1#1#1#1#(E1#1#1#1#100) = E1#1#1#1#100#2
The hecta-exaxis is equivalent to 10^^^^^100, which is also known as the "gigol" in Bowers' System.
Before reaching the gorgegol regiment, let's peek into supplementals of the grangol regiment based on n-ary numerals from guppy regiment.
Category 2
Regiment block 6
Members: 61
(1699 - 1759)
First, define the n-ary grangol regiments based on some milestones like googoldex, grangoldex, grangoldudex, etc.
(1699) googoldexibit = E[2]100#1#2 = E[2]100#(2^100) = E[2]100#1 267 650 600 228 229 401 496 703 205 376
(also called (1700) binary-googoldex)
(1701) ternary-googoldex = E[3]100#1#2 = E[3]100#(3^100) = E[3]100#515 377 520 732 011 331 036 461 129 765 621 272 702 107 522 001
(1702) quaternary-googoldex = E[4]100#1#2 = E[4]100#(4^100)
(1703) quinary-googoldex = E[5]100#1#2 = E[5]100#(5^100)
(1704) senary-googoldex = E[6]100#1#2 = E[6]100#(6^100)
(1705) googoldexibyte = E[8]100#1#2 = E[8]100#(8^100) =
E[8]100#2 037 035 976 334 486 086 268 445 688 409 378 161 051 468 393 665 936 250 636 140 449 354 381 299 763 336 706 183 397 376
(also called (1706) octal-googoldex)
(1707) duodecimal-googoldex = E[12]100#1#2 = E[12]100#(12^100)
(1708) hexadecimal-googoldex = E[16]100#1#2 = E[16]100#(16^100)
(1709) vigesimal-googoldex = E[20]100#1#2 = E[20]100#(20^100)
(1710) sexagesimal-googoldex = E[60]100#1#2 = E[60]100#(60^100)
etc.
With googolplexidex...
(1711) googolplexidexibit = E[2]100#2#2 = E[2]100#(2^2^100)
(also called (1712) binary-googolplexidex)
(1713) ternary-googolplexidex = E[3]100#2#2
(1714) googolplexidexibyte = E[8]100#2#2
(also called (1715) octal-googolplexidex)
etc.
With grangoldex...
(1716) grangoldexibit = E[2]100#100#2
(also called (1717) binary-grangoldex)
(1718) ternary-grangoldex = E[3]100#100#2
(1719) quaternary-grangoldex = E[4]100#100#2
(1720) quinary-grangoldex = E[5]100#100#2
(1721) senary-grangoldex = E[6]100#100#2
(1722) grangoldexibyte = E[8]100#100#2
(also called (1723) octal-grangoldex)
(1724) duodecimal-grangoldex = E[12]100#100#2
(1725) hexadecimal-grangoldex = E[16]100#100#2
(1726) vigesimal-grangoldex = E[20]100#100#2
(1727) sexagesimal-grangoldex = E[60]100#100#2
etc.
With grangoldudex...
(1728) grangoldudexibit = E[2]100#100#3
(also called (1729) binary-grangoldudex)
(1730) ternary-grangoldudex = E[3]100#100#3
(1731) grangoldudexibyte = E[8]100#100#3
(also called (1732) octal-grangoldudex)
etc.
And finally,
(1733) grangoltridexibit = E[2]100#100#4
(also called (1734) binary-grangoltridex)
And we can also have some n-ary -taxis power towers too!
In binary:
(1735) binary-tria-taxis = E[2]1#1#3 = 2^^^3 = 2^^2^^2 = 2^^4 = 2^2^2^2 = 2^2^4 = 2^16 = 65,536
(1736) binary-tetra-taxis = E[2]1#1#4 = 2^^^4 = 2^^2^^2^^2 = 2^^65,536
(1737) binary-penta-taxis = E[2]1#1#5 = 2^^^5
(1738) binary-hexa-taxis = E[2]1#1#6 = 2^^^6
(1739) binary-hepta-taxis = E[2]1#1#7 = 2^^^7
(1740) binary-octa-taxis = E[2]1#1#8 = 2^^^8
(1741) binary-enna-taxis = E[2]1#1#9 = 2^^^9
(1742) binary-deka-taxis = E[2]1#1#10 = 2^^^10
...
(1743) binary-hecta-taxis = E[2]1#1#100 = 2^^^100
(1744) binary-chilia-taxis = E[2]1#1#1000 = 2^^^1000
(1745) binary-myria-taxis = E[2]1#1#10,000 = 2^^^10,000
etc.
In ternary:
(1746) ternary-tria-taxis = E[3]1#1#3 = 3^^^3 = 3^^3^^3 = 3^^7,625,597,484,987
Ternary-tria-taxis is also called "tritri" in Bowers' system.
(1747) ternary-tetra-taxis = E[3]1#1#4 = 3^^^4 = 3^^3^^3^^3
...
(1748) ternary-deka-taxis = E[3]1#1#10 = 3^^^10
...
(1749) ternary-hecta-taxis = E[3]1#1#100 = 3^^^100
etc.
In quaternary:
(1750) quaternary-tria-taxis = E[4]1#1#3 = 4^^^3 = 4^^4^^4 = 4^^4^4^256
(1751) quaternary-tetra-taxis = E[4]1#1#4 = 4^^^4
etc.
In octal:
(1752) octal-tria-taxis = E[8]1#1#3 = 8^^^3
(1753) octal-tetra-taxis = E[8]1#1#4 = 8^^^4
(1754) octal-deka-taxis = E[8]1#1#10 = 8^^^10
(1755) octal-hecta-taxis = E[8]1#1#100 = 8^^^100
etc.
and finally, in hexadecimal:
(1756) hexadecimal-tria-taxis = E[16]1#1#3 = 16^^^3
(1757) hexadecimal-tetra-taxis = E[16]1#1#4 = 16^^^4
(1758) hexadecimal-deka-taxis = E[16]1#1#10 = 16^^^10
(1759) hexadecimal-hecta-taxis = E[16]1#1#100 = 16^^^100
Rise out of the system! Let's continue to the next regiment, the gorgegol regiment!
Category 5
Regiment block 7
Members: 86 (53 original + 33 new)
(1760 - 1845)
[5 arrows to 6 arrows]
Level 1 | Stage 2-4
Stage 2-4 ~ Breaking gigantic googol of the intermediate up-arrow notation level.
Next comes the Gorgegol group (gorgegol is short for the "gorged googol". To be gorged means to be full in excess. So the gorgegol is literally bursting with fullness!). By definition:
(1760) gorgegol ☆★ = E100#100#100#100#100
(The gorgegol is comparable to and slightly larger than the "gigol" of Bowers' System)
The gorgegol is the 100th member of the gigangol series, where a gigangol is the 1st member, a gigangoltetrex is the 2nd, a gigangoldutetrex is the 3rd, etc.
Next we can extend it in the following series (using -pentex suffix, following the sequence: "-dex after grangol, -threx after greagol, -tetrex after gigangol, ..."):
(1761) gorgegolpentex ☆ = E100#100#100#100#100#2
(1762) gorgegoldupentex = E100#100#100#100#100#3
(1763) gorgegoltripentex = E100#100#100#100#100#4
(1764) gorgegolquadripentex = E100#100#100#100#100#5
(1765) gorgegolquintipentex = E100#100#100#100#100#6
...
(1766) gorgegoldecipentex = E100#100#100#100#100#11
(1767) gorgegolcentipentex = E100#100#100#100#100#101
Of course we can also introduce ...
(1768) gorgegolding = E500#500#500#500#500
etc.
(1769) gorgegolchime = E1000#1000#1000#1000#1000
(1770) gorgegolpentexichime = E1000#1000#1000#1000#1000#2
(1771) gorgegoldupentexichime = E1000#1000#1000#1000#1000#3
etc.
(1772) gorgegolbell = E5000#5000#5000#5000#5000
etc.
(1773) gorgegoltoll = E10,000#10,000#10,000#10,000#10,000
(1774) gorgegolpentexitoll = E10,000#10,000#10,000#10,000#10,000#2
(1775) gorgegoldupentexitoll = E10,000#10,000#10,000#10,000#10,000#3
etc.
(1776) gorgegolgong = E100,000#100,000#100,000#100,000#100,000
(1777) gorgegolpentexigong = E100,000#100,000#100,000#100,000#100,000#2
(1778) gorgegoldupentexigong = E100,000#100,000#100,000#100,000#100,000#3
(1779) gorgegoltripentexigong = E100,000#100,000#100,000#100,000#100,000#4
etc.
(1780) gorgegolbong = E100,000,000#100,000,000#100,000,000#100,000,000#100,000,000
(1781) gorgegolpentexibong = E100,000,000#100,000,000#100,000,000#100,000,000#100,000,000#2
(1782) gorgegoldupentexibong = E100,000,000#100,000,000#100,000,000#100,000,000#100,000,000#3
etc.
(1782) gorgegolthrong =
E100,000,000,000#100,000,000,000#100,000,000,000#100,000,000,000#100,000,000,000
(1784) gorgegolpentexithrong =
E100,000,000,000#100,000,000,000#100,000,000,000#100,000,000,000#100,000,000,000#2
(1785) gorgegoldupentexithrong =
E100,000,000,000#100,000,000,000#100,000,000,000#100,000,000,000#100,000,000,000#3
etc.
(1786) gorgegolgandingan =
E100,000,000,000,000#100,000,000,000,000#100,000,000,000,000#100,000,000,000,000#100,000,000,000,000
etc.
We can also apply these suffixes to Bowers' gigol /g-I-gol/:
(1787) gigolding = E1#1#1#1#500
(1788) gigolchime = E1#1#1#1#1000
(1789) gigolbell = E1#1#1#1#5000
(1790) gigoltoll = E1#1#1#1#10,000
(1791) gigolgong = E1#1#1#1#100,000
(1792) gigolbong = E1#1#1#1#100,000,000
(1793) gigolthrong = E1#1#1#1#100,000,000,000
(1794) gigolgandingan = E1#1#1#1#100,000,000,000,000
Again we can create some interesting combinatorial googolism's:
(1795) googolpentex = E100#1#1#1#1#2
(1796) grangolpentex = E100#100#1#1#1#2
(1797) greagolpentex = E100#100#100#1#1#2
also...
(1798) gorgegolplex = E(E100#100#100#100#100)
(1799) gorgegoldex = E100#(E100#100#100#100#100)
(1800) gorgegolthrex = E100#100#(E100#100#100#100#100)
(1801) gorgegoltetrex = E100#100#100#(E100#100#100#100#100) = E100#100#100#100#101
We can also create a bunch of in between values...
between a gorgegol and a gorgegolpentex is...
(1802) gigangolpentex = E100#100#100#100#1#2
(1803) gigangoltetrexipentex = E100#100#100#100#2#2
(1804) gigangoldutetrexipentex = E100#100#100#100#3#2
etc.
between a gorgegolpentex and a gorgegoldupentex is...
(1805) gigangoldupentex = E100#100#100#100#1#3
(1806) gigangoltetrexidupentex = E100#100#100#100#2#3
(1807) gigangoldutetrexidupentex = E100#100#100#100#3#3
etc.
between a gorgegoldupentex and a gorgegoltripentex is ...
(1808) gigangoltripentex = E100#100#100#100#1#4
(1809) gigangoltetrexitripentex = E100#100#100#100#2#4
(1810) gigangoldutetrexitripentex = E100#100#100#100#3#4
etc.
... and so on ...
We can also have:
(1811) ecetonpentex = E303#1#1#1#1#2
(1812) ecetondupentex = E303#1#1#1#1#3
(1813) ecetontripentex = E303#1#1#1#1#4
(1814) ecetonquadripentex = E303#1#1#1#1#5
(1815) ecetonquintipentex = E303#1#1#1#1#6
etc.
(1816) eceto-grangolpentex = E303#303#1#1#1#2
(1817) eceto-greagolpentex = E303#303#303#1#1#2
(1818) eceto-gigangolpentex = E303#303#303#303#1#2
(1819) eceto-gigangoltetrexipentex = E303#303#303#303#2#2
etc.
(1820) eceto-gorgegol = E303#303#303#303#303
(1821) eceto-gorgegolpentex = E303#303#303#303#303#2
(1822) eceto-gorgegoldupentex = E303#303#303#303#303#3
(1823) eceto-gorgegoltripentex = E303#303#303#303#303#4
(1824) eceto-gorgegolquadripentex = E303#303#303#303#303#5
(1825) eceto-gorgegolquintipentex = E303#303#303#303#303#6
etc.
Lastly we can give name to common hepta-towers:
(1826) tria-eptaxis = E1#1#1#1#1#3 ⍟☆★ = 10^^^^^^3 (formerly tria-eptaksys)
(1827) tetra-eptaxis = E1#1#1#1#1#4 ⍟☆ = 10^^^^^^4 (formerly tetra-eptaksys)
(1828) penta-eptaxis ⍟☆ = E1#1#1#1#1#5 = 10^^^^^^5
(1829) hexa-eptaxis ⍟☆ = E1#1#1#1#1#6 = 10^^^^^^6
(1830) hepta-eptaxis ⍟ = E1#1#1#1#1#7 = 10^^^^^^7
(1831) octa-eptaxis ⍟ = E1#1#1#1#1#8 = 10^^^^^^8
(1832) enna-eptaxis ⍟ = E1#1#1#1#1#9 = 10^^^^^^9
(1833) deka-eptaxis ⍟☆ = E1#1#1#1#1#10 = 10^^^^^^10 (formerly deka-eptaksys)
...
(1834) hecta-eptaxis ⍟☆★ = E1#1#1#1#1#100 = 10^^^^^^100 (formerly hecta-eptaksys)
The hecta-eptaxis is equivalent to 10^^^^^^100, also known as the "goggol" in Bowers' system. We can also have...
(1835) chilia-eptaxis = E1#1#1#1#1#1000 = 10^^^^^^1000
(1836) myria-eptaxis = E1#1#1#1#1#10,000 = 10^^^^^^10,000
(1837) octadia-eptaxis = E1#1#1#1#1#100,000,000 = 10^^^^^^100,000,000
(1838) sedeniadia-eptaxis = E1#1#1#1#1#10,000,000,000,000,000 = 10^^^^^^10^16
...
(1839) googolia-eptaxis = E1#1#1#1#1#(E100)
(1840) dekalogia-eptaxis = E1#1#1#1#1#(E1#10)
(1841) deka-taxia-eptaxis = E1#1#1#1#1#(E1#1#10)
(1842) deka-petaxia-eptaxis = E1#1#1#1#1#(E1#1#1#10)
(1843) deka-exaxia-eptaxis = E1#1#1#1#1#(E1#1#1#1#10)
(1844) deka-eptaxia-eptaxis = E1#1#1#1#1#(E1#1#1#1#1#10)
(1845) hecta-eptaxia-eptaxis ✡ = E1#1#1#1#1#(E1#1#1#1#1#100)
Category 6
Regiment block 8
Members: 77 (48 original + 29 new)
(1846 - 1922)
[6 arrows to 7 arrows]
Next we reach the truly enormous gulgol group (gulgol is short for the *gulp* googol). Let:
(1846) gulgol ☆★ = E100#100#100#100#100#100
(Note: the gulgol is comparable to and slightly larger than the "goggol" of Bowers' System)
With -hex extension (not to be confused with Greek numeral "hexa", which means "six"!):
(1847) gulgolhex ☆ = E100#100#100#100#100#100#2
(1848) gulgolduhex = E100#100#100#100#100#100#3
(1849) gulgoltrihex = E100#100#100#100#100#100#4
(1850) gulgolquadrihex = E100#100#100#100#100#100#5
(1854) gulgolquintihex = E100#100#100#100#100#100#6
With the addition of the modifiers we have...
(1855) gulgolding = E500#500#500#500#500#500
etc.
(1856) gulgolchime = E1000#1000#1000#1000#1000#1000
(1857) gulgolhexichime = E1000#1000#1000#1000#1000#1000#2
(1858) gulgolduhexichime = E1000#1000#1000#1000#1000#1000#3
etc.
(1859) gulgolbell = E5000#5000#5000#5000#5000#5000
etc.
(1860) gulgoltoll = E10,000#10,000#10,000#10,000#10,000#10,000
(1861) gulgolhexitoll = E10,000#10,000#10,000#10,000#10,000#10,000#2
(1862) gulgolduhexitoll = E10,000#10,000#10,000#10,000#10,000#10,000#3
etc.
(1863) gulgolgong = E100,000#100,000#100,000#100,000#100,000#100,000
(1864) gulgolhexigong = E100,000#100,000#100,000#100,000#100,000#100,000#2
(1865) gulgolduhexigong = E100,000#100,000#100,000#100,000#100,000#100,000#3
etc.
(1866) gulgolbong = E100,000,000#100,000,000#100,000,000#100,000,000#100,000,000#100,000,000
(1867) gulgolhexibong
= E100,000,000#100,000,000#100,000,000#100,000,000#100,000,000#100,000,000#2
(1868) gulgolduhexibong
= E100,000,000#100,000,000#100,000,000#100,000,000#100,000,000#100,000,000#3
etc.
(1869) gulgolthrong
= E100,000,000,000#100,000,000,000#100,000,000,000#100,000,000,000#100,000,000,000#100,000,000,000
(1870) gulgolhexithrong
= E100,000,000,000#100,000,000,000#100,000,000,000#100,000,000,000#100,000,000,000#100,000,000,000#2
(1871) gulgolduhexithrong
= E100,000,000,000#100,000,000,000#100,000,000,000#100,000,000,000#100,000,000,000#100,000,000,000#3
etc.
(1872) gulgolgandingan =
E100,000,000,000,000#100,000,000,000,000#100,000,000,000,000#100,000,000,000,000#100,000,000,000,000#100,000,000,000,000
We can also apply these modifiers to Bowers' goggol:
(1873) goggolding = E1#1#1#1#1#500
(1874) goggolchime = E1#1#1#1#1#1000
(1875) goggolbell = E1#1#1#1#1#5000
(1876) goggoltoll = E1#1#1#1#1#10,000
(1877) goggolgong = E1#1#1#1#1#100,000
(1878) goggolbong = E1#1#1#1#1#100,000,000
(1879) goggolthrong = E1#1#1#1#1#100,000,000,000
(1880) goggolgandingan = E1#1#1#1#1#100,000,000,000,000
More combinatorial googolism's...
(1881) googolhex = E100#1#1#1#1#1#2
(1882) grangolhex = E100#100#1#1#1#1#2
(1883) greagolhex = E100#100#100#1#1#1#2
(1884) gigangolhex = E100#100#100#100#1#1#2
... and also ...
(1885) gulgolplex = E(E100#100#100#100#100#100)
(1886) gulgoldex = E100#(E100#100#100#100#100#100)
(1887) gulgolthrex = E100#100#(E100#100#100#100#100#100)
(1888) gulgoltetrex = E100#100#100#(E100#100#100#100#100#100)
(1889) gulgolpentex = E100#100#100#100#(E100#100#100#100#100#100)
= E100#100#100#100#100#101
Now the in betweens...
Between a gulgol and a gulgolhex ...
(1890) gorgegolhex = E100#100#100#100#100#1#2
(1891) gorgegolpentexihex = E100#100#100#100#100#2#2
etc.
Between a gulgolhex and a gulgolduhex ...
(1892) gorgegolduhex = E100#100#100#100#100#1#3
(1893) gorgegolpentexiduhex = E100#100#100#100#100#2#3
etc.
Between a gulgolduhex and a gultrihex ...
(1894) gorgegoltrihex = E100#100#100#100#100#1#4
(1895) gorgegolpentexitrihex = E100#100#100#100#100#2#4
etc.
Now for the ecetonhex series :
(1896) ecetonhex = E303#1#1#1#1#1#2
(1897) ecetonduhex = E303#1#1#1#1#1#3
(1898) ecetontrihex = E303#1#1#1#1#1#4
etc.
(1899) eceto-grangolhex = E303#303#1#1#1#1#2
(1900) eceto-greagolhex = E303#303#303#1#1#1#2
(1901) eceto-gigangolhex = E303#303#303#303#1#1#2
(1902) eceto-gorgegolhex = E303#303#303#303#303#1#2
etc.
(1903) eceto-gulgolhex = E303#303#303#303#303#303#2
(1904) eceto-gulgolduhex = E303#303#303#303#303#303#3
(1905) eceto-gulgoltrihex = E303#303#303#303#303#303#4
etc.
Lastly we have the -octaxis series:
(1906) tria-octaxis ⍟☆ = E1#1#1#1#1#1#3 = 10^^^^^^^3
(formerly tria-octaksys)
(1907) tetra-octaxis ⍟☆ = E1#1#1#1#1#1#4 = 10^^^^^^^4
(formerly tetra-octaksys)
(1908) penta-octaxis ⍟ = E1#1#1#1#1#1#5 = 10^^^^^^^5
(1909) hexa-octaxis ⍟ = E1#1#1#1#1#1#6 = 10^^^^^^^6
(1910) hepta-octaxis ⍟ = E1#1#1#1#1#1#7 = 10^^^^^^^7
(1911) octa-octaxis ⍟ = E1#1#1#1#1#1#8 = 10^^^^^^^8
(1912) enna-octaxis ⍟ = E1#1#1#1#1#1#9 = 10^^^^^^^9
(1913) deka-octaxis ⍟☆ = E1#1#1#1#1#1#10 = 10^^^^^^^10
(formerly deka-octaksys)
...
(1914) icosa-octaxis = E1#1#1#1#1#1#20 = 10^^^^^^^^20
...
(1915) hecta-octaxis ⍟☆★ = E1#1#1#1#1#1#100 = 10^^^^^^^100
(formerly hecta-octaksys)
Hecta-octaxis is also known as "gagol" in the Bowers' system. We can also have...
(1916) chilia-octaxis = E1#1#1#1#1#1#1000 = 10^^^^^^^1000
(1917) myria-octaxis = E1#1#1#1#1#1#10,000 = 10^^^^^^^10,000
I forgot to make "icosa-" (20) power towers of 10 in the "-taxis series", so I made up in this section instead. Say,
(1918) icosa-eptaxis = E1#1#1#1#1#20 = 10^^^^^^20
(Note: intended to belong to the gorgegol regiment)
And finally,
(1919) octadia-octaxis = E1#1#1#1#1#1#100,000,000 = 10^^^^^^^100,000,000
(1920) sedeniadia-octaxis = E1#1#1#1#1#1#10,000,000,000,000 = 10^^^^^^^10^16
...
(1921) deka-octaxia-octaxis = E1#1#1#1#1#1#10#2
(1922) hecta-octaxia-octaxis ✡ = E1#1#1#1#1#1#100#2