This is a long list for my BAN and SAN numbers.
Using the Hierarchial Hyper-Nested Array Notation, where \ indicates /, ¬ indicates ~, and () indicates subscripts.
BAN Extension by Douglas Shamlin Jr.
Tethrinoogol = {100, 100 [1 \ 2] 2} (Class 15: Iterated Cantor normal form level)
Tethrinoogolgong = {100, 100000 [1 \ 2] 2} (Class 15: Iterated Cantor normal form level)
Grand tethrinoogol = {100, 3, 2 [1 \ 2] 2} = {100, tethrinoogol [1 \ 2] 2} = {100, {100, 100 [1 \ 2] 2} [1 \ 2] 2} (Class 16: Epsilon level)
Grantethrinoogol = {100, 100, 2 [1 \ 2] 2} (Class 16: Epsilon level)
Hundred-ex-grand-tethrinoogol = {100, 102, 2 [1 \ 2] 2} (Class 16: Epsilon level) where n-ex-grand-tethrinoogol = {100, n + 2, 2 [1 \ 2] 2}
Greatethrinoogol = {100, 100, 3 [1 \ 2] 2} (Class 16: Epsilon level)
Gigantethrinoogol = {100, 100, 4 [1 \ 2] 2} (Class 16: Epsilon level)
Gorgetethrinoogol = {100, 100, 5 [1 \ 2] 2} (Class 16: Epsilon level)
Gultethrinoogol = {100, 100, 6 [1 \ 2] 2} (Class 16: Epsilon level)
Gasptethrinoogol = {100, 100, 7 [1 \ 2] 2} (Class 16: Epsilon level)
Ginortethrinoogol = {100, 100, 8 [1 \ 2] 2} (Class 16: Epsilon level)
Gargantethrinoogol = {100, 100, 9 [1 \ 2] 2} (Class 16: Epsilon level)
Googontethrinoogol = {100, 100, 10 [1 \ 2] 2} (Class 16: Epsilon level)
Graatatethrinoogol = {100, 100, 1, 2 [1 \ 2] 2} (Class 16: Epsilon level)
Greetethrinoogol = {100, 100, 2, 2 [1 \ 2] 2} (Class 16: Epsilon level)
Gruelohatethrinoogol = {100, 100, 5, 2 [1 \ 2] 2} (Class 16: Epsilon level)
Gugolthratethrinoogol = {100, 100, 100, 2 [1 \ 2] 2} (Class 16: Epsilon level)
Gugolhexatethrinoogol = {100, 100, 100, 5 [1 \ 2] 2} (Class 16: Epsilon level)
Throotethrinoogol = {100, 100, 100, 100 [1 \ 2] 2} (Class 16: Epsilon level)
Godgahlahtethrinoogol = {100, 100 [2] 2 [1 \ 2] 2} (Class 16: Epsilon level)
Godtothotethrinoogol = {100, 100 [1 [2] 2] 2 [1 \ 2] 2} (Class 16: Epsilon level)
Tethritrioogol = {100, 100 [1 \ 2] 3} (Class 16: Epsilon level)
Tethripentoogol = {100, 100 [1 \ 2] 5} (Class 16: Epsilon level)
Tethriexoogol = {100, 100 [1 \ 2] 6} (Class 16: Epsilon level)
Tethrieptoogol = {100, 100 [1 \ 2] 7} (Class 16: Epsilon level)
Tethrioctoogol = {100, 100 [1 \ 2] 8} (Class 16: Epsilon level)
Tethringugold = {100, 100 [1 \ 2] 100} (Class 16: Epsilon level)
Tethringugolthra = {100, 100 [1 \ 2] 100, 2} (Class 16: Epsilon level)
Tethrinthroogol = {100, 100 [1 \ 2] 100, 100} (Class 16: Epsilon level)
Tethrintetroogol = {100, 100 [1 \ 2] 100, 100, 100} (Class 16: Epsilon level)
Tethringodgahlah = {100, 100 [1 \ 2] 1 [2] 2} (Class 16: Epsilon level)
Tethringodtothol = {100, 100 [1 \ 2] 1 [1 [2] 2] 2} (Class 16: Epsilon level)
Deutero-tethrinoogol = {100, 100 [1 \ 2] 1 [1 \ 2] 2} (Class 16: Epsilon level)
Trito-tethrinoogol = {100, 100 [1 \ 2] 1 [1 \ 2] 1 [1 \ 2] 2} (Class 16: Epsilon level)
Teterto-tethrinoogol = {100, 100 [1 \ 2] 1 [1 \ 2] 1 [1 \ 2] 1 [1 \ 2] 2} (Class 16: Epsilon level)
Pepto-tethrinoogol = {100, 100 [1 \ 2] 1 [1 \ 2] 1 [1 \ 2] 1 [1 \ 2] 1 [1 \ 2] 2 (Class 16: Epsilon level)
Tethrinoofact / Hecto-tethrinoogol = {100, 100 [2 \ 2] 2} (Class 16: Epsilon level)
Grand tethrinoofact / Grand hecto-tethrinoogol = {100, 3, 2 [2 \ 2] 2} (Class 16: Epsilon level)
Tethrinooduliath = {100, 100 [1 [1 \ 2] 2 \ 2] 2} (Class 16: Epsilon level)
Tethrinoothruliath = {100, 100 [1 [1 \ 2] 3 \ 2] 2} (Class 16: Epsilon level)
Tethrinoopepliath = {100, 100 [1 [1 \ 2] 5 \ 2] 2} (Class 16: Epsilon level)
Giganticoogol = {100, 100 [1 [1 \ 2] 1, 2 \ 2] 2} (Class 16: Epsilon level)
Deutero-giganticoogol = {100, 100 [1 [1 \ 2] 1, 2 \ 2] 1 [1 [1 \ 2] 1, 2 \ 2] 2} (Class 16: Epsilon level)
Trito-giganticoogol = {100, 100 [1 [1 \ 2] 1, 2 \ 2] 1 [1 [1 \ 2] 1, 2 \ 2] 1 [1 [1 \ 2] 1, 2 \ 2] 2} (Class 16: Epsilon level)
Two-ex-giganticoogol = {100, 100 [1 [1 \ 2] 1, 3 \ 2] 2} (Class 16: Epsilon level)
Five-ex-giganticoogol = {100, 100 1 [1 \ 2] 1, 6 \ 2] 2} (Class 16: Epsilon level)
Giganticoogrid = {100, 100 [1 [1 \ 2] 1, 1, 2 \ 2] 2} (Class 16: Epsilon level)
Giganticoocube = {100, 100 [1 [1 \ 2] 1, 1, 1, 2 \ 2] 2} (Class 16: Epsilon level)
Giganticoopenteract = {100, 100 [1 [1 \ 2] 1, 1, 1, 1, 1, 2 \ 2] 2} (Class 16: Epsilon level)
Tethrinoogol-ad-tethrigodgathorium = {100, 100 [1 [1 \ 2] 1 [1, 2] 2 \ 2] 2} (Class 16: Epsilon level)
Tethrinoogol-ad-tethrinooduliathium = {100, 100 [1 [1 \ 2] 1 [1 \ 2] 2 \ 2] 2} (Class 16: Epsilon level)
Tethrinoogol-ad-tethrinoothruliathium = {100, 100 [1 [1 \ 2] 1 [1 \ 2] 1 [1 \ 2] 2 \ 2] 2} (Class 16: Epsilon level)
Tethrinoogol-ad-tethrinoopepliathium = {100, 100 [1 [1 \ 2] 1 [1 \ 2] 1 [1 \ 2] 1 [1 \ 2] 1 [1 \ 2] 2 \ 2] 2} (Class 16: Epsilon level)
Super giganticoogol = {100, 100 [1 [2 \ 2] 2 \ 2] 2} (Class 16: Epsilon level)
Terrible tethrinoogol = {100, 100 [1 \ 3] 2} (Class 16: Epsilon level)
Deutero-terrible tethrinoogol = {100, 100 [1 \ 3] 1 [1 \ 3] 2} (Class 16: Epsilon level)
Trito-terrible tethrinoogol = {100, 100 [1 \ 3] 1 [1 \ 3] 1 [1 \ 3] 2} (Class 16: Epsilon level)
Territethrinoofact = {100, 100 [2 \ 3] 2} (Class 16: Epsilon level)
Terrible terrible tethrinoogol = {100, 100 [1 \ 4] 2} (Class 16: Epsilon level)
Triple-terrible tethrinoogol = {100, 100 [1 \ 5] 2} (Class 16: Epsilon level)
Quadruple-terrible tethrinoogol = {100, 100 [1 \ 6] 2} (Class 16: Epsilon level)
Quintuple-terrible tethrinoogol = {100, 100 [1 \ 7] 2} (Class 16: Epsilon level)
Tethrinooterator / Tethrinoogol ba'al = {100, 100 [1 \ 1, 2] 2} (Class 16: Epsilon level)
Great and terrible tethrinoogol / Grand tethrinooterator / Grand tethrinoogol ba'al = {100, 3, 2 [1 \ 1, 2] 2} = {100, {100, 100 [1 \ 1, 2] 2} [1 \ 1, 2] 2} = {100, tethrinooterator [1 \ 1, 2] 2} (Class 16: Epsilon level)
Deutero-tethrinooterator = {100, 100 [1 \ 1, 2] 1 [1 \ 1, 2] 2} (Class 16: Epsilon level)
Tethrinooterfact = {100, 100 [2 \ 1, 2] 2} (Class 16: Epsilon level)
Gridutertethrinooterator = {100, 100 [3 \ 1, 2] 2} (Class 16: Epsilon level)
Kubicutethrinooterator = {100, 100 [4 \ 1, 2] 2} (Class 16: Epsilon level)
Tethrinooterator-dubletetrate = {100, 100 [1 [1 \ 1, 2] 2 \ 1, 2] 2} (Class 16: Epsilon level)
Terrible tethrinooterator = {100, 100 [1 \ 2, 2] 2} (Class 16: Epsilon level)
Tethrinooditerator = {100, 100 [1 \ 1, 3] 2} (Class 16: Epsilon level)
Tethrinootriterator / Tethrinoocubiculator = {100, 100 [1 \ 1, 4] 2} (Class 16: Epsilon level)
Tethrinooquidterator = {100, 100 [1 \ 1, 6] 2} (Class 16: Epsilon level)
Tethrinoogridterator / Tethrinoospatialator = {100, 100 [1 \ 1, 1, 2] 2} (Class 16: Epsilon level)
Tethrinoodeuterspatialator = {100, 100 [1 \ 1, 1, 3] 2} (Class 16: Epsilon level)
Tethrinootritospatialator = {100, 100 [1 \ 1, 1, 4] 2} (Class 16: Epsilon level)
Tethrinoocubiterator = {100, 100 [1 \ 1, 1, 1, 2] 2} (Class 16: Epsilon level)
Tethrinooquintiterator = {100, 100 [1 \ 1, 1, 1, 1, 1, 2] 2} (Class 16: Epsilon level)
Tethrinoospacialator = {100, 100 [1 \ 1 [2] 2] 2} (Class 16: Epsilon level)
Dustaculated-tethrinoogol = {100, 100 [1 \ 1 [1 \ 2] 2] 2} (Class 16: Epsilon level)
Territethrinoogol-turreted-dustaculated-tethrinoogol = {100, 100 [1 \ 1 [1 \ 1 [1 \ 3] 2] 2] 2} (Class 16: Epsilon level)
Pentastaculated-tethrinoogol = {100, 100 [1 \ 1 [1 \ 1 [1 \ 1 [1 \ 1 [1 \ 2] 2] 2] 2] 2] 2} (Class 16: Epsilon level)
Dekastaculated-tethrinoogol = {100, 100 [1 \ 1 [1 \ 1 [1 \ 1 [1 \ 1 [1 \ 1 [1 \ 1 [1 \ 1 [1 \ 1 [1 \ 1 [1 \ 2] 2] 2] 2] 2] 2} (Class 16: Epsilon level)
Tethrinoocross = {100, 100 [1 \ 1 \ 2] 2} (Class 16: Epsilon level)
Deutero-tethrinoocross = {100, 100 [1 \ 1 \ 2] 1 [1 \ 1 \ 2] 2} (Class 17: Binary phi level)
Tethrinoocruxifact = {100, 100 [2 \ 1 \ 2] 2} (Class 17: Binary phi level)
Grideutertethrinoocross = {100, 100 [3 \ 1 \ 2] 2} (Class 17: Binary phi level)
Secundotethrated-tethrinoocross = {100, 100 [1 \ 1 \ 3] 2} (Class 17: Binary phi level)
Thrice-tethrinoosecunda = {100, 100 [1 \ 1 \ 4] 2} (Class 17: Binary phi level)
Quincice-tethrinoosecunda = {100, 100 [1 \ 1 \ 6] 2} (Class 17: Binary phi level)
Tethrinootercross = {100, 100 [1 \ 1 \ 1, 2] 2} (Class 17: Binary phi level)
Tethrinooditercross = {100, 100 [1 \ 1 \ 1, 3] 2} (Class 17: Binary phi level)
Tethrinoocubor = {100, 100 [1 \ 1 \ 1 \ 2] 2} (Class 17: Binary phi level)
Tethrinoocubor-by-deuteron = {100, 100 [1 \ 1 \ 1 \ 2] 3} (Class 17: Binary phi level)
Tethrinoocuborgugold = {100, 100 [1 \ 1 \ 1 \ 2] 100} (Class 17: Binary phi level)
Tethrinooteron = {100, 100 [1 \ 1 \ 1 \ 1 \ 2] 2} (Class 17: Binary phi level)
Tethrinoopeton = {100, 100 [1 \ 1 \ 1 \ 1 \ 1 \ 2] 2} (Class 17: Binary phi level)
Tethrinoohexon = {100, 100 [1 \ 1 \ 1 \ 1 \ 1 \ 2] 2} (Class 17: Binary phi level)
Tethrinoohepton = {100, 100 [1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 2] 2} (Class 17: Binary phi level)
Tethrinoo-ogdon = {100, 100 [1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 2] 2} (Class 17: Binary phi level)
Tethrinoo-ennon = {100, 100 [1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 2] 2} (Class 17: Binary phi level)
Tethrinoodekon = {100, 100 [1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 2] 2} (Class 17: Binary phi level)
Tethrinoo-icoson = {100, 20 [1 [2 ¬ 2] 2] 2} (Class 17: Binary phi level)
Tethrinootope = {100, 100 [1 [2 ¬ 2] 2] 2} (Class 17: Binary phi level)
Tethrinoolattitope = {100, 100 [1 [3 ¬ 2] 2] 2} (Class 17: Binary phi level)
Tethrinooquartitope = {100, 100 [1 [5 ¬ 2] 2] 2} (Class 17: Binary phi level)
Tethrinoononitope = {100, 100 [1 [10 ¬ 2] 2] 2} (Class 17: Binary phi level)
Tethrinoogarxitri = {100, 100 [1 [1 [1 \ 2] 2 ¬ 2] 2] 2} (Class 17: Binary phi level)
Tethrinoogarxitet = {100, 100 [1 [1 [1 [1 [1 \ 2] 2 ¬ 2] 2] 2 ¬ 2] 2] 2} (Class 17: Binary phi level)
Tethrinoogarxipent = {100, 100 [1 [1 [1 [1 [1 [1 [1 \ 2] 2 ¬ 2] 2] 2 ¬ 2] 2] 2 ¬ 2] 2] 2} (Class 17: Binary phi level)
Tethrinoogarxihex = {100, 100 [1 [1 [1 [1 [1 [1 [1 [1 [1 \ 2] 2 ¬ 2] 2] 2 ¬ 2] 2] 2 ¬ 2] 2] 2 ¬ 2] 2] 2} (Class 17: Binary phi level)
Tethrinoogarxihept = {100, 100 [1 [1 [1 [1 [1 [1 [1 [1 [1 [1 [1 \ 2] 2 ¬ 2] 2] 2 ¬ 2] 2] 2 ¬ 2] 2] 2 ¬ 2] 2] 2 ¬ 2] 2] 2} (Class 17: Binary phi level)
Tethrinoogarxiogd = {100, 100 [1 [1 [1 [1 [1 [1 [1 [1 [1 [1 [1 [1 [1 \ 2] 2 ¬ 2] 2] 2 ¬ 2] 2] 2 ¬ 2] 2] 2 ¬ 2] 2] 2 ¬ 2] 2] 2 ¬ 2] 2] 2} (Class 17: Binary phi level)
Tethrinoogarxienn = {100, 100 [1 [1 [1 [1 [1 [1 [1 [1 [1 [1 [1 [1 [1 [1 [1 \ 2] 2 ¬ 2] 2] 2 ¬ 2] 2] 2 ¬ 2] 2] 2 ¬ 2] 2] 2 ¬ 2] 2] 2 ¬ 2] 2] 2 ¬ 2] 2] 2} (Class 17: Binary phi level)
Tethrinoogarxideck = {100, 10 [1 [1 \ 2 ¬ 2] 2] 2} (Class 17: Binary phi level)
Tethrinoogarxicose = {100, 20 [1 [1 \ 2 ¬ 2] 2] 2} (Class 17: Binary phi level)
Tethrinoogarxitriane = {100, 30 [1 [1 \ 2 ¬ 2] 2] 2} (Class 17: Binary phi level)
Tethrinoogarxisarane = {100, 40 [1 [1 \ 2 ¬ 2] 2] 2} (Class 17: Binary phi level)
Tethrinoogarxipenine = {100, 50 [1 [1 \ 2 ¬ 2] 2] 2} (Class 17: Binary phi level)
Tethrinoogarxiexine = {100, 60 [1 [1 \ 2 ¬ 2] 2] 2} (Class 17: Binary phi level)
Tethrinoogarxiebdomine = {100, 70 [1 [1 \ 2 ¬ 2] 2] 2} (Class 17: Binary phi level)
Tethrinoogarxiogdone = {100, 80 [1 [1 \ 2 ¬ 2] 2] 2} (Class 17: Binary phi level)
Tethrinoogarxienenine = {100, 90 [1 [1 \ 2 ¬ 2] 2] 2} (Class 17: Binary phi level)
Tethrinoogarxihect / Pentacthuloogol = {100, 100 [1 [1 \ 2 ¬ 2] 2] 2} (Class 17: Binary phi level)
Tethrinoogarxigigas = {100, 500 [1 [1 \ 2 ¬ 2] 2] 2} (Class 17: Binary phi level)
Tethrinoogarxichill = {100, 1000 [1 [1 \ 2 ¬ 2] 2] 2} (Class 17: Binary phi level)
Tethrinoogarximyr = {100, 10000 [1 [1 \ 2 ¬ 2] 2] 2} (Class 17: Binary phi level)
Tethrinoogarxi-octad = {100, {10, 8} [1 [1 \ 2 ¬ 2] 2] 2} (Class 17: Binary phi level)
Tethrinoogarxi-sedeniad = {100, {10, 16} [1 [1 \ 2 ¬ 2] 2] 2} (Class 17: Binary phi level)
Territoped-pentacthuloogol = {100, 100 [1 [2 ¬ 2] 2 [1 \ 2 ¬ 2] 2] 2} (Class 18: Bachmann's collapsing level)
Dupentated-pentacthuloogol = {100, 100 [1 [1 [1 [1 [2 ¬ 2] 2] 2 ¬ 2] 2] 2 ¬ 2] 2 [1 \ 2 ¬ 2] 2] 2} (Class 18: Bachmann's collapsing level)
Quinquapentated-pentacthuloogol = {100, 100 [1 [1 [1 [1 [1 [1 [1 [1 [1 [1 \ 2 ¬ 2] 2] 2 ¬ 2] 2 [1 \ 2 ¬ 2] 2 [1 \ 2 ¬ 2] 2] 2 ¬ 2] 2 [1 \ 2 ¬ 2] 2] 2 ¬ 2] 2 [1 \ 2 ¬ 2] 2] 2} (Class 18: Bachmann's collapsing level)
Pentacthuloodugon = {100, 100 [1 [1 \ 2 ¬ 2] 3] 2} (Class 18: Bachmann's collapsing level)
Pentacthulootetragon = {100, 100 [1 [1 \ 2 ¬ 2] 5] 2} (Class 18: Bachmann's collapsing level)
Pentacthulooterator = {100, 100 [1 [1 \ 2 ¬ 2] 1, 2] 2} (Class 18: Bachmann's collapsing level)
Pentacthulooquadiator = {100, 100 [1 [1 \ 2 ¬ 2] 1, 5] 2} (Class 18: Bachmann's collapsing level)
Pentacthuloogridiator = {100, 100 [1 [1 \ 2 ¬ 2] 1, 1, 2] 2} (Class 18: Bachmann's collapsing level)
Pentacthuloocubiator = {100, 100 [1 [1 \ 2 ¬ 2] 1, 1, 1, 2] 2} (Class 18: Bachmann's collapsing level)
Pentacthuloocross = {100, 100 [1 [1 \ 2 ¬ 2] 1 \ 2] 2} (Class 18: Bachmann's collapsing level)
Pentacthulooducross = {100, 100 [1 [1 \ 2 ¬ 2] 1 \ 3] 2} (Class 18: Bachmann's collapsing level)
Pentacthulootetracross = {100, 100 [1 [1 \ 2 ¬ 2] 1 \ 5] 2} (Class 18: Bachmann's collapsing level)
Pentacthulootercross = {100, 100 [1 [1 \ 2 ¬ 2] 1 \ 1, 2] 2} (Class 18: Bachmann's collapsing level)
Pentacthuloocubor = {100, 100 [1 [1 \ 2 ¬ 2] 1 \ 1 \ 2] 2} (Class 18: Bachmann's collapsing level)
Pentacthuloopeton = {100, 100 [1 [1 \ 2 ¬ 2] 1 \ 1 \ 1 \ 1 \ 2] 2} (Class 18: Bachmann's collapsing level)
Pentacthuloodekon = {100, 100 [1 [1 \ 2 ¬ 2] 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 2] 2} (Class 18: Bachmann's collapsing level)
Pentacthulootope = {100, 100 [1 [1 \ 2 ¬ 2] 1 [2 ¬ 2] 2] 2} (Class 18: Bachmann's collapsing level)
Pentacthuloolattitope = {100, 100 [1 [1 \ 2 ¬ 2] 1 [3 ¬ 2] 2] 2} (Class 18: Bachmann's collapsing level)
Pentacthuloocubitope = {100, 100 [1 [1 \ 2 ¬ 2] 1 [4 ¬ 2] 2] 2} (Class 18: Bachmann's collapsing level)
Pentacthulooquinticutope = {100, 100 [1 [1 \ 2 ¬ 2] 1 [6 ¬ 2] 2] 2} (Class 18: Bachmann's collapsing level)
Pentacthuloogodgathor = {100, 100 [1 [1 \ 2 ¬ 2] 1 [1, 2 ¬ 2] 2] 2} (Class 18: Bachmann's collapsing level)
Pentacthulootethrinoogol = {100, 100 [1 [1 \ 2 ¬ 2] 1 [1 [1 \ 2] 2 ¬ 2] 2] 2} (Class 18: Bachmann's collapsing level)
Pentacthuloogarxitri = {100, 100 [1 [1 \ 2 ¬ 2] 1 [1 [1 [1 \ 2 ¬ 2] 2] 2 ¬ 2] 2] 2} (Class 18: Bachmann's collapsing level)
Pentacthuloogarxipent = {100, 5 [1 [1 \ 2 ¬ 2] 1 [1 \ 2 ¬ 2] 2] 2} (Class 18: Bachmann's collapsing level)
Pentacthuloogarxideck = {100, 10 [1 [1 \ 2 ¬ 2] 1 [1 \ 2 ¬ 2] 2] 2} (Class 18: Bachmann's collapsing level)
Pentacthuloogarxicose = {100, 20 [1 [1 \ 2 ¬ 2] 1 [1 \ 2 ¬ 2] 2] 2} (Class 18: Bachmann's collapsing level)
Pentacthuloogarxipenine = {100, 50 [1 [1 \ 2 ¬ 2] 1 [1 \ 2 ¬ 2] 2] 2} (Class 18: Bachmann's collapsing level)
Hexacthuloogol = {100, 100 [1 [1 \ 2 ¬ 2] 1 [1 \ 2 ¬ 2] 2] 2} (Class 18: Bachmann's collapsing level)
Hepacthuloogol = {100, 100 [1 [1 \ 2 ¬ 2] 1 [1 \ 2 ¬ 2] 1 [1 \ 2 ¬ 2] 2] 2} (Class 18: Bachmann's collapsing level)
Ogdacthuloogol = {100, 100 [1 [1 \ 2 ¬ 2] 1 [1 \ 2 ¬ 2] 1 [1 \ 2 ¬ 2] 1 [1 \ 2 ¬ 2] 2] 2} (Class 18: Bachmann's collapsing level)
Ennacthuloogol = {100, 100 [1 [1 \ 2 ¬ 2] 1 [1 \ 2 ¬ 2] 1 [1 \ 2 ¬ 2] 1 [1 \ 2 ¬ 2] 1 [1 \ 2 ¬ 2] 2] 2} (Class 18: Bachmann's collapsing level)
Dekacthuloogol = {100, 100 [1 [1 \ 2 ¬ 2] 1 [1 \ 2 ¬ 2] 1 [1 \ 2 ¬ 2] 1 [1 \ 2 ¬ 2] 1 [1 \ 2 ¬ 2] 2] 1 [1 \ 2 ¬ 2] 2] 2} (Class 18: Bachmann's collapsing level)
Triadekacthuloogol = {100, 10 [1 [2 \ 2 ¬ 2] 2] 2} (Class 18: Bachmann's collapsing level)
Icosacthuloogol = {100, 17 [1 [2 \ 2 ¬ 2] 2] 2} (Class 18: Bachmann's collapsing level)
Gollinoogol = {100, 49 [1 [2 \ 2 ¬ 2] 2] 2} (Class 18: Bachmann's collapsing level)
Godsgodgoogol = {100, 99 [1 [2 \ 2 ¬ 2] 2] 2} (Class 18: Bachmann's collapsing level)
Godsgodgoogolchime = {100, 999 [1 [2 \ 2 ¬ 2] 2] 2} (Class 18: Bachmann's collapsing level)
Godsgodgoogoltoll = {100, 9999 [1 [2 \ 2 ¬ 2] 2] 2} (Class 18: Bachmann's collapsing level)
Godsgodgoogolgong = {100, 99999 [1 [2 \ 2 ¬ 2] 2] 2} (Class 18: Bachmann's collapsing level)
Colossoogol = {100, 5 * 10^16 [1 [2 \ 2 ¬ 2] 2] 2} (Class 18: Bachmann's collapsing level)
Godsgridoogol = {100, 100 [1 [3 \ 2 ¬ 2] 2] 2}(Class 18: Bachmann's collapsing level)
Godskubioogol = {100, 100 [1 [4 \ 2 ¬ 2] 2] 2} (Class 18: Bachmann's collapsing level)
Godsquartioogol = {100, 100 [1 [5 \ 2 ¬ 2] 2] 2} (Class 18: Bachmann's collapsing level)
Centuroogol = {100, 100 [1 [1, 2 \ 2 ¬ 2] 2] 2} (Class 18: Bachmann's collapsing level)
Blasphemorgoogol = {100, 100 [1 [1 \ 3 ¬ 2] 2] 2} (Class 18: Bachmann's collapsing level)
Demagoogol = {100, 100 [1 [1 \ 9 ¬ 2] 2] 2} (Class 18: Bachmann's collapsing level)
Ominongoogol = {100, 100 [1 [1 \ 1, 2 ¬ 2] 2] 2} (Class 18: Bachmann's collapsing level)
Multiversoogol = {100, 100 [1 [2 \ 1, 2 ¬ 2] 2] 2} (Class 18: Bachmann's collapsing level)
Metaversoogol = {100, 100 [1 [1 \ 1, 1, 2 ¬ 2] 1 [1 [3 \ 2 ¬ 2] 1 [3 \ 2 ¬ 2] 1 [3 \ 2 ¬ 2] 1 [3 \ 2 ¬ 2] 2] 2] 2} (Class 18: Bachmann's collapsing level)
Little birdie = {100, 100 [1 [1 \ 1 \ 2 ¬ 2] 2] 2} (Class 18: Bachmann's collapsing level)
Lugubrigoogol = {100, 100 [1 [1 ¬ 3] 2] 2} (Class 18: Bachmann's collapsing level)
Trugubrigoogol = {100, 100 [1 [1 ¬ 4] 2] 2} (Class 19: Higher computable level)
Tetrugubrigoogol = {100, 100 [1 [1 ¬ 5] 2] 2} (Class 19: Higher computable level)
Pentugubrigoogol = {100, 100 [1 [1 ¬ 6] 2] 2} (Class 19: Higher computable level)
Hexugubrigoogol = {100, 100 [1 [1 ¬ 7] 2] 2} (Class 19: Higher computable level)
Heptugubrigoogol = {100, 100 [1 [1 ¬ 8] 2] 2} (Class 19: Higher computable level)
Ogdugubrigoogol = {100, 100 [1 [1 ¬ 9] 2] 2} (Class 19: Higher computable level)
Ennugubrigoogol = {100, 100 [1 [1 ¬ 10] 2] 2} (Class 19: Higher computable level)
Dekugubrigoogol = {100, 100 [1 [1 ¬ 11] 2] 2} (Class 19: Higher computable level)
Centugubrigoogol = {100, 100 [1 [1 ¬ 1, 2] 2] 2} (Class 19: Higher computable level)
Big Bird = {100, 100 [1 [1 ¬ 1 ¬ 2] 2] 2} (Class 19: Higher computable level)
Tria-hierarchaxis = {100, 100 [1 [1 [2 \(3) 2] 2] 2] 2} (Class 19: Higher computable level)
Tetra-hierarchaxis = {100, 100 [1 [1 [1 [2 \(4) 2] 2] 2] 2] 2} (Class 19: Higher computable level)
Penta-hierarchaxis = {100, 100 [1 [1 [1 [1 [2 \(5) 2] 2] 2] 2] 2] 2} (Class 19: Higher computable level)
Hexa-hierarchaxis = {100, 100 [1 [1 [1 [1 [1 [2 \(6) 2] 2] 2] 2] 2] 2] 2} (Class 19: Higher computable level)
Hepta-hierarchaxis = {100, 100 [1 [1 [1 [1 [1 [1 [2 \(7) 2] 2] 2] 2] 2] 2] 2] 2} (Class 19: Higher computable level)
Octa-hierarchaxis = {100, 100 [1 [1 [1 [1 [1 [1 [1 [2 \(8) 2] 2] 2] 2] 2] 2] 2] 2] 2} (Class 19: Higher computable level)
Enna-hierarchaxis = {100, 100 [1 [1 [1 [1 [1 [1 [1 [1 [2 \(9) 2] 2] 2] 2] 2] 2] 2] 2] 2] 2} (Class 19: Higher computable level)
Deka-hierarchaxis = {100, 100 [1 [1 [1 [1 [1 [1 [1 [1 [1 [2 \(10) 2] 2] 2] 2] 2] 2] 2] 2] 2] 2] 2} (Class 19: Higher computable level)
Hecta-hierarchaxis / Corporalmax = {100, 100 [1 [2 \(1, 2) 2] 2] 2} = {100, 100 [1 [2 \(100) 2]_{1} 2] 2} (Class 19: Higher computable level)
Mulporalmax = {100, 100 [1 [1 [2 \(2, 2) 2] 2] 2] 2} (Class 19: Higher computable level)
Powporalmax = {100, 100 [1 [1 [1 [2 \(3, 2) 2] 2] 2] 2] 2} (Class 19: Higher computable level)
Corplodalmax = {100, 100 [1 [1 [2 \(1, 3) 2] 2] 2] 2} (Class 19: Higher computable level)
Cordetalmax = {100, 100 [1 [1 [1 [2 \(1, 4) 2] 2] 2] 2] 2} (Class 19: Higher computable level)
Meg-Googolmax = {100, 100 [1 [2 \(1, 1, 2) 2] 2] 2} (Class 19: Higher computable level)
Dumeg-Googolmax = {100, 100 [1 [1 [2 \(1, 1, 3) 2] 2] 2] 2} (Class 19: Higher computable level)
Gig-Googolmax = {100, 100 [1 [2 \(1, 1, 1, 2) 2] 2] 2} (Class 19: Higher computable level)
Dugig-Googolmax = {100, 100 [1 [1 [2 \(1, 1, 1, 3) 2] 2] 2] 2} (Class 19: Higher computable level)
Ter-Googolmax = {100, 100 [1 [2 \(1, 1, 1, 1, 2) 2] 2] 2} (Class 19: Higher computable level)
Goobolmax = {100, 100 [1 [2 \(1 [2] 2) 2] 2] 2} (Class 19: Higher computable level)
Gibbolmax = {100, 100 [1 [1 [2 \(2 [2] 2) 2] 2] 2] 2} (Class 19: Higher computable level)
Gootrolmax = {100, 100 [1 [1 [2 \(1 [2] 3) 2] 2] 2] 2} (Class 19: Higher computable level)
Gooterolmax = {100, 100 [1 [1 [1 [2 \(1 [2] 4) 2] 2] 2] 2] 2} (Class 19: Higher computable level)
Diteralmax / Dubolmax = {100, 100 [1 [2 \(1 [2] 1 [2] 2) 2] 2] 2} (Class 19: Higher computable level)
Xappolmax = {100, 100 [1 [2 \(1 [3] 2) 2] 2] 2} (Class 19: Higher computable level)
Colossolmax = {100, 100 [1 [2 \(1 [4] 2) 2] 2] 2} (Class 19: Higher computable level)
Goplexulusmax = {100, 100 [1 [2 \(1 [1 [2] 2] 2) 2] 2] 2} (Class 19: Higher computable level)
Tethrinoogolmax = {100, 100 [1 [2 \(1 [1 \ 2] 2) 2] 2] 2} (Class 19: Higher computable level)
Tethrinoofactimax / Hecto-tethrinoogolmax = {100, 100 [1 [2 \(1 [2 \ 2] 2) 2] 2] 2} (Class 19: Higher computable level)
Terrible tethrinoogolmax = {100, 100 [1 [2 \(1 [1 \ 3] 2) 2] 2] 2} (Class 19: Higher computable level)
Terrible terrible tethrinoogolmax = {100, 100 [1 [2 \(1 [1 \ 4] 2) 2] 2] 2} (Class 19: Higher computable level)
Tethrinoocrossmax = {100, 100 [1 [2 \(1 [1 \ 1 \ 2] 2) 2] 2] 2} (Class 19: Higher computable level)
Secundotethrated-tethrinoocrossmax = {100, 100 [1 [2 \(1 [1 \ 1 \ 3] 2) 2] 2] 2} (Class 19: Higher computable level)
Tethrinoocubormax = {100, 100 [1 [2 \(1 [1 \ 1 \ 1 \ 2] 2) 2] 2] 2} (Class 19: Higher computable level)
Tethrinooteronmax = {100, 100 [1 [2 \(1 [1 \ 1 \ 1 \ 1 \ 2] 2) 2] 2] 2} (Class 19: Higher computable level)
Tethrinootopemax = {100, 100 [1 [2 \(1 [1 [2 \(2) 2] 2] 2) 2] 2] 2} (Class 19: Higher computable level)
Berotha = {100, 100 [1 [2 \(1 \ 2) 2] 2] 2} (Class 19: Higher computable level)
Kuehne = {100, 100 [1 [2 \(1 \ 3) 2] 2] 2} (Class 19: Higher computable level)
Ekal = {100, 100 [1 [2 \(1 \ 1 \ 2) 2] 2] 2} (Class 19: Higher computable level)
Neohi = {100, 100 [1 [2 \(1 [2 \(2) 2] 2) 2] 2] 2} (Class 19: Higher computable level)
Onycho = {100, 100 [1 [2 \(1 [1 \ 1 \(2) 2] 2) 2] 2] 2} (Class 19: Higher computable level)
Vicarya = {100, 100 [1 [2 \(1 [1 \ 1 \(2) 2 \ 2] 2) 2] 2] 2} (Class 19: Higher computable level)
Gaeru = {100, 100 [1 [2 \(1 [1 [2 \(3) 2] 2] 2) 2] 2] 2} (Class 19: Higher computable level)
Mammoth = {100, 100 [1 [2 \(1 \(2) 2) 2] 2] 2} (Class 19: Higher computable level)
Dodo = {100, 100 [1 [2 \(1 \ 1 \(2) 2) 2] 2] 2} (Class 19: Higher computable level)
Arsino = {100, 100 [1 [2 \(1 [2 \(3) 2] 2) 2] 2] 2} (Class 19: Higher computable level)
Wolfium = {100, 100 [1 [2 \(1 \(3) 2) 2] 2] 2} (Class 19: Higher computable level)
Orthros = {100, 100 [1 [2 \(1 \(1, 2) 2) 2] 2] 2} (Class 19: Higher computable level)
Rocker = {100, 100 [1 [2 \(1 \(1 [2] 2) 2) 2] 2] 2} (Class 19: Higher computable level)
Brainium = {100, 100 [1 [2 \(1 \(1 \ 2) 2) 2] 2] 2} (Class 19: Higher computable level)
Triceratops = {100, 100 [1 [2 \(1 \(1 \(2) 2) 2) 2] 2] 2} (Class 19: Higher computable level)
Carnotaurus = {100, 100 [1 [2 \(1 \(1 \(1 \ 2) 2) 2) 2] 2] 2} (Class 19: Higher computable level)
Dire = {100, 100 [1 [2 \(1 \(1 \(1 \(2) 2) 2) 2) 2] 2] 2} (Class 19: Higher computable level)
Servality = {100, 100 [1 [2 \(1 \(1 \(1 \(1 \(2) 2) 2) 2) 2) 2] 2] 2} (Class 19: Higher computable level)
Dimendity = {100, 100 [1 [2 \(1 \(1 \(1 \(1 \(1 \(1 \(1 \(1 \(1 \(1 \(1 \(1 \(1 \(1 \(1 \(1 \(1 \(1 \ 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2] 2] 2} (Class 19: Higher computable level)
^ indicates the separators that are at the left-superscript position of the close brace.
Extentriendol = s(3, 3, 3 {1 ` 2} 2) (Class 16: Epsilon level)
Extenlindol = s(3, 3 {2} 2 {1 ` 2} 2) (Class 16: Epsilon level)
Extenlinbdol = s(3, 3 {2} 1 {2} 2 {1 ` 2} 2) (Class 16: Epsilon level)
Extentril = s(3, 3 {1 ` 2} 3) (Class 16: Epsilon level)
Dimenextendol = s(3, 3 {1 ` 2} 3, 3) (Class 16: Epsilon level)
Linextendol = s(3, 3 {1 ` 2} 1 {2} 2) (Class 16: Epsilon level)
Extenbol = s(3, 3 {1 ` 2} 1 {1 ` 2} 2) (Class 16: Epsilon level)
Extendol-suplex = s(3, 3 {2 ` 2} 2) (Class 16: Epsilon level)
Extentrien-suplex = s(3, 3, 3 {2 ` 2} 2) (Class 16: Epsilon level)
Extentril-suplex = s(3, 3 {2 ` 2} 3) (Class 16: Epsilon level)
Extenbol-suplex = s(3, 3 {2 ` 2} 1 {2 ` 2} 2) (Class 16: Epsilon level)
Extendol-bisuplex = s(3, 3 {3 ` 2} 2) (Class 16: Epsilon level)
Extentrien-bisuplex = s(3, 3, 3 {3 ` 2} 2) (Class 16: Epsilon level)
Extentril-bisuplex = s(3, 3 {3 ` 2} 3) (Class 16: Epsilon level)
Extenbol-bisuplex = s(3, 3 {3 ` 2} 1 {3 ` 2} 2) (Class 16: Epsilon level)
Extendol-trisuplex = s(3, 3 {4 ` 2} 2) (Class 16: Epsilon level)
Extentrien-trisuplex = s(3, 3, 3 {4 ` 2} 2) (Class 16: Epsilon level)
Extentril-trisuplex = s(3, 3 {4 ` 2} 3) (Class 16: Epsilon level)
Extenbol-trisuplex = s(3, 3 {4 ` 2} 1 {4 ` 2} 2) (Class 16: Epsilon level)
Extendol-quadrisuplex = s(3, 3 {5 ` 2} 2) (Class 16: Epsilon level)
Extentrien-quadrisuplex = s(3, 3, 3 {5 ` 2} 2) (Class 16: Epsilon level)
Extentril-quadrisuplex = s(3, 3 {5 ` 2} 3) (Class 16: Epsilon level)
Extenbol-quadrisuplex = s(3, 3 {5 ` 2} 1 {5 ` 2} 2) (Class 16: Epsilon level)
Extendol-quintisuplex = s(3, 3 {6 ` 2} 2) (Class 16: Epsilon level)
Extentrien-quintisuplex = s(3, 3, 3 {6 ` 2} 2) (Class 16: Epsilon level)
Extentril-quintisuplex = s(3, 3 {6 ` 2} 3) (Class 16: Epsilon level)
Extenbol-quintisuplex = s(3, 3 {6 ` 2} 1 {6 ` 2} 2) (Class 16: Epsilon level)
Extendol-sudex = s(3, 3 {1 ` 3} 2) (Class 16: Epsilon level)
Extendol-sudex-suplex = s(3, 3 {2 ` 3} 2) (Class 16: Epsilon level)
Extentrien-sudex-suplex = s(3, 3, 3 {2 ` 3} 2) (Class 16: Epsilon level)
Extentril-sudex-suplex = s(3, 3 {2 ` 3} 3) (Class 16: Epsilon level)
Extenbol-sudex-suplex = s(3, 3 {2 ` 3} 1 {2 ` 3} 2) (Class 16: Epsilon level)
Extendol-sudex-bisuplex = s(3, 3 {3 ` 3} 2) (Class 16: Epsilon level)
Extentrien-sudex-bisuplex = s(3, 3, 3 {3 ` 3} 2) (Class 16: Epsilon level)
Extentril-sudex-bisuplex = s(3, 3 {3 ` 3} 3) (Class 16: Epsilon level)
Extenbol-sudex-bisuplex = s(3, 3 {3 ` 3} 1 {3 ` 3} 2) (Class 16: Epsilon level)
Extendol-suplex-sudex = s(3, 3 {1 ` 4} 2) (Class 16: Epsilon level)
Extentrien-suplex-sudex = s(3, 3, 3 {1 ` 4} 2) (Class 16: Epsilon level)
Extentril-suplex-sudex = s(3, 3 {1 ` 4} 3) (Class 16: Epsilon level)
Extenbol-suplex-sudex = s(3, 3 {1 ` 4} 1 {1 ` 4} 2) (Class 16: Epsilon level)
Extendol-suplex-sudex-suplex = s(3, 3 {2 ` 4} 2) (Class 16: Epsilon level)
Extentrien-suplex-sudex-suplex = s(3, 3, 3 {2 ` 4} 2) (Class 16: Epsilon level)
Extentril-suplex-sudex-suplex = s(3, 3 {2 ` 4} 3) (Class 16: Epsilon level)
Extenbol-suplex-sudex-suplex = s(3, 3 {2 ` 4} 1 {2 ` 4} 2) (Class 16: Epsilon level)
Extendol-bisuplex-sudex = s(3, 3 {1 ` 5} 2) (Class 16: Epsilon level)
Extentrien-bisuplex-sudex = s(3, 3, 3 {1 ` 5} 2) (Class 16: Epsilon level)
Extentril-bisuplex-sudex = s(3, 3 {1 ` 5} 3) (Class 16: Epsilon level)
Extenbol-bisuplex-sudex = s(3, 3 {1 ` 5} 1 {1 ` 5} 2) (Class 16: Epsilon level)
Extendol-bisuplex-sudex-suplex = s(3, 3 {2 ` 5} 2) (Class 16: Epsilon level)
Extentrien-bisuplex-sudex-suplex = s(3, 3, 3 {2 ` 5} 2) (Class 16: Epsilon level)
Extentril-bisuplex-sudex-suplex = s(3, 3 {2 ` 5} 3) (Class 16: Epsilon level)
Extenbol-bisuplex-sudex-suplex = s(3, 3 {2 ` 5} 1 {2 ` 5} 2) (Class 16: Epsilon level)
Extendol-trisuplex-sudex = s(3, 3 {1 ` 6} 2) (Class 16: Epsilon level)
Extentrien-trisuplex-sudex = s(3, 3, 3 {1 ` 6} 2) (Class 16: Epsilon level)
Extentril-trisuplex-sudex = s(3, 3 {1 ` 6} 3) (Class 16: Epsilon level)
Extenbol-trisuplex-sudex = s(3, 3 {1 ` 6} 1 {1 ` 6} 2) (Class 16: Epsilon level)
Extendol-bisudex = s(3, 3 {1 ` 1 ` 2} 2) (Class 16: Epsilon level)
Bixtendol = s(3, 3 {1 `` 2} 2) (Class 18: Bachmann's collapsing level)
Trixtendol = s(3, 3 {1 ``` 2} 2) = s(3, 3 {1 {2}` 2} 2) (my extension) (Class 19: Higher computable level)
Tetrixtendol = s(3, 3 {1 ```` 2} 2) (Class 19: Higher computable level)
Pentixtendol = s(3, 3 {1 ````` 2} 2) (Class 19: Higher computable level)
Hexixtendol = s(3, 3 {1 `````` 2} 2) (Class 19: Higher computable level)
Heptixtendol = s(3, 3 {1 ``````` 2} 2) (Class 19: Higher computable level)
Octixtendol = s(3, 3 {1 ```````` 2} 2) (Class 19: Higher computable level)
Ennixtendol = s(3, 3 {1 ````````` 2} 2) (Class 19: Higher computable level)
Dekixtendol = s(3, 3 {1 `````````` 2} 2) (Class 19: Higher computable level)
Icosixtendol = s(3, 3 {1 ```````````````````` 2} 2) (20 `'s) (Class 19: Higher computable level)
Triantixtendol = s(3, 3 {1 ``` ... ``` 2} 2) (30 `'s) (Class 19: Higher computable level)
Terantixtendol / Sarantixtendol = s(3, 3 {1 ``` ... ``` 2} 2) (40 `'s) (Class 19: Higher computable level)
Penantixtendol = s(3, 3 {1 ``` ... ``` 2} 2) (50 `'s) (Class 19: Higher computable level)
Exantixtendol = s(3, 3 {1 ``` ... ``` 2} 2) (60 `'s) (Class 19: Higher computable level)
Eptatixtendol / Ebdominixtendol = s(3, 3 {1 ``` ... ``` 2} 2) (70 `'s) (Class 19: Higher computable level)
Ogdatixtendol / Ogdonixtendol = s(3, 3 {1 ``` ... ``` 2} 2) (80 `'s) (Class 19: Higher computable level)
Entatixtendol / Eneninixtendol = s(3, 3 {1 ``` ... ``` 2} 2) (90 `'s) (Class 19: Higher computable level)
Hectixtendol = s(3, 3 {1 ``` ... ``` 2} 2) (100 `'s) (Class 19: Higher computable level)
Primo-droppol = s(3, 3 {1 ,, 1 ,, 2} 2) (Class 19: Higher computable level)
Primo-dropptrien = s(3, 3, 3 {1 ,, 1 ,, 2} 2) (Class 19: Higher computable level)
Primo-dropptril = s(3, 3 {1 ,, 1 ,, 2} 3) (Class 19: Higher computable level)
Primo-dropbol = s(3, 3 {1 ,, 1 ,, 2} 1 {1 ,, 1 ,, 2} 2) (Class 19: Higher computable level)
Secondo-droppol = s(3, 3 {1 ,,, 1 ,,, 2} 2) (Class 19: Higher computable level)
Secondo-dropptrien = s(3, 3, 3 {1 ,,, 1 ,,, 2} 2) (Class 19: Higher computable level)
Secondo-dropptril = s(3, 3 {1 ,,, 1 ,,, 2} 3) (Class 19: Higher computable level)
Secondo-dropbol = s(3, 3 {1 ,,, 1 ,,, 2} 1 {1 ,,, 1 ,,, 2} 2) (Class 19: Higher computable level)
Terzo-droppol = s(3, 3 {1 ,,,, 1, 2} 2) (Class 19: Higher computable level)
Quarto-droppol = s(3, 3 {1 ,,,,, 1, 2} 2) (Class 19: Higher computable level)
Quinto-droppol = s(3, 3 {1 ,,,,,, 1, 2} 2) (Class 19: Higher computable level)
Sesto-droppol = s(3, 3 {1 ,,,,,,, 1, 2} 2) (Class 19: Higher computable level)
Settimo-droppol = s(3, 3 {1 ,,,,,,,, 1, 2} 2) (Class 19: Higher computable level)
Ottavo-droppol = s(3, 3 {1 ,,,,,,,,, 1, 2} 2) (Class 19: Higher computable level)
Nono-droppol = s(3, 3 {1 ,,,,,,,,,, 1, 2} 2) (Class 19: Higher computable level)
Decimo-droppol = s(3, 3 {1 ,,,,,,,,,,, 1, 2} 2) (Class 19: Higher computable level)
Droppol (my definition) = s(3, 3 {1 ,,, ... ,,, 1, 2} 2) (100 ,'s) (Class 19: Higher computable level)