WARNING: This page will be updated frequently without any notice.
This is a grand list of numbers using almost all notations in the googology wiki.
Hayden's Tritri = 3(3)3 = 3^3 = 27 (Class 1)
Hayden's Tritet = 4(4)4 = 4^^4 (a. k. a. Tritet Jr.) (Class 3)
Hayden's Tripent = 5(5)5 = 5^^^5 (a. k. a. Boogafive) (Class 7: Up-arrow notation level)
Hayden's Trihex = 6(6)6 = 6^^^^6 (a. k. a. Boogasix) (Class 7: Up-arrow notation level)
Hayden's Trihept = 7(7)7 = 7 {5} 7 (Class 7: Up-arrow notation level)
Hayden's Trioct = 8(8)8 = 8 {6} 8 (Class 7: Up-arrow notation level)
Hayden's Trienn = 9(9)9 = 9 {7} 9 (Class 7: Up-arrow notation level)
Hayden's Tridecal = 10(10)10 = 10 {8} 10 (a. k. a. Deka-ennaxis) (Class 7: Up-arrow notation level)
Hayden's Tetratri = 3(3)(3)3 = {3, 3, 3, 4} (Class 8: Linear omega level)
Hayden's Tetratet = 4(4)(4)4 = {4, 4, 4, 5} (Class 8: Linear omega level)
Hayden's General = 10(10)(10)10 = {10, 10, 10, 11} (Class 8: Linear omega level)
Hayden's Pentatri = 3(3)(3)(3)3 = {3, 3, 3, 3, 4} (Class 9: Quadratic omega level)
Hayden's Pentapent = 5(5)(5)(5)5 = {5, 5, 5, 5, 6} (Class 9: Quadratic omega level)
Hayden's Hexatri = 3(3)(3)(3)(3)3 = {3, 3, 3, 3, 3, 4} (Class 10: Polynomial omega level)
Hayden's Hexahex = 6(6)(6)(6)(6)6 = {6, 6, 6, 6, 6, 7} (Class 10: Polynomial omega level)
Hayden's Heptatri = 3(3)(3)(3)(3)(3)3 = {3, 3, 3, 3, 3, 3, 4} (Class 10: Polynomial omega level)
Hayden's Heptahept = 7(7)(7)(7)(7)(7)7 = {7, 7, 7, 7, 7, 7, 8} (Class 10: Polynomial omega level)
Hayden's Octatri = 3(3)(3)(3)(3)(3)(3)3 = {3, 3, 3, 3, 3, 3, 3, 4} (Class 10: Polynomial omega level)
Hayden's Octaoct = 8(8)(8)(8)(8)(8)(8)8 = {8, 8, 8, 8, 8, 8, 8, 9} (a. k. a. Hyperogd) (Class 10: Polynomial omega level)
Hayden's Ennatri = 3(3)(3)(3)(3)(3)(3)(3)3 = {3, 3, 3, 3, 3, 3, 3, 3, 4} (Class 10: Polynomial omega level)
Hayden's Ennaenn = 9(9)(9)(9)(9)(9)(9)(9)9 = {9, 9, 9, 9, 9, 9, 9, 9, 10} (a. k. a. Hyperenn) (Class 10: Polynomial omega level)
Hayden's Dekatri = 3(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)3 = {3, 3, 3, 3, 3, 3, 3, 3, 3, 4} (Class 10: Polynomial omega level)
Hayden's Dekadek = 10(10)(10)(10)(10)(10)(10)(10)(10)(10)(10)10 = {10, 10, 10, 10, 10, 10, 10, 10, 10, 11} (a. k. a. Hyperdecal) (Class 10: Polynomial omega level)
Hayden's Dupertri = 3(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)3 (twenty-seven 3's) = {3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4} (Class 10: Polynomial omega level)
Ultratri = 3(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)(3)3 (333 3's) = {3, 3, 3, ... 3, 3, 4} (332 3's) (Class 10: Polynomial omega level)
Hayden's Trupertri = 3(3)(3)(3) ... (3)(3)(3)3 (Hayden's Dupertri 3's) = {3, 3, 3, ... 3, 3, 4} (Hayden's Dupertri - 1 3's) (Class 11: Exponentiated linear omega level)
Lé Tritri au lait (French) (English: Tritri with milk) = 3(1, 3)3 / 3 / 3 = 3(1, 4)4 = 3[2]43 / 3 / 3 = 3[2]54 = {3, 3, 3, 3 (1) 4} = {3, 4 (1) 5} = {3, 3, 3, 3 [2] 4} = {3, 4 [2] 5} (Class 11: Exponentiated linear omega level)
Hayden's Dutritri = 3(2, 3)3 = 3[3]43= {3, 3 (2) 4} = {3, 3 [3] 4} (Class 11: Exponentiated linear omega level)
Hayden's Dimentri = 3(3, 3)3 = 3[4]43 = {3, 3 (3) 4} = {3, 3 [4] 4} (Class 12: Exponentiated polynomial omega level)
Tritritri = 3(4, 3)3 = 3[5]43 = {3, 3 (4) 4} = {3, 3 [5] 4} (Class 12: Exponentiated polynomial omega level)
Multitri = 3(3 ¬ 3, 3)3 = {3, 3 (3, 3) 4} (Class 13: Double exponentiated polynomial omega level)
Extritri = 3(1#1#1, 3)3 = 3(1##3, 3)3 = {3, 3 (((1)1)1) 4} (Class 15: Iterated Cantor normal form level)
Nothingness = 10[] = 10^10 = 1,000,000,000 (a. k. a. dialogue) (Class 2)
Zerance = 10[10] = 10[&] (Class 7: Up-arrow notation level)
Uniance = 10[&1] (Class 8: Linear omega level)
Biance = 10[&2] (Class 8: Linear omega level)
Triance = 10[&3] (Class 8: Linear omega level)
Tetriance / Genesis = 10[&4] (Class 8: Linear omega level)
Pentiance = 10[&5] (Class 8: Linear omega level)
Dekiance / Iterais = 10[&10] = 10[&&] (Class 8: Linear omega level)
Iteraduis = 10[&&10] = 10[&&&] (Class 8: Linear omega level)
Iteratris = 10[&&&10] = 10[&&&&] (Class 8: Linear omega level)
Iterapentis = 10[&&&&&10] = 10[&&&&&&] (Class 8: Linear omega level)
Iteradekis = 10[&&&&&&&&&&10] = 10[&&&&&&&&&&&] (Class 8: Linear omega level)
Gooandol = 10[&1100] (Class 9: Quadratic omega level)
Inspire = 10[&1&1] (Class 9: Quadratic omega level)
Admire = 10[&1&1&1] (Class 9: Quadratic omega level)
Desire = 10[&1&1&1&1] (Class 9: Quadratic omega level)
Booandol = 10[&2100] (Class 10: Polynomial omega level)
Trooandol = 10[&3100] (Class 10: Polynomial omega level)
Pentooandol = 10[&5100] (Class 10: Polynomial omega level)
Dekooandol = 10[&10100] (Class 10: Polynomial omega level)
Godsoogol = 10[&10010] (Class 10: Polynomial omega level)
All BMS expressions are with respect to version 2.3 = 4, simulating Hardy Hierarchy.
Triple catastrophe = (0, 0, 0)(1, 1, 1)[100] (Class 19: Higher computable level)
Unexpandable = (0, 0, 0)(1, 1, 1)(2, 1, 1)(3, 1, 0)(2, 0, 0)[100] ~ EBO in FGH (Class 19: Higher computable level)
Omninaccassible = (0, 0, 0)(1, 1, 1)(2, 1, 1)(3, 1, 1)[100] ~ ψ(Iω) in FGH (Class 19: Higher computable level)
First reversed gate number barrier = (0, 0, 0)(1, 1, 1)(2, 2, 0)[100] ~ ψ(ΩT + 1) in FGH (Class 19: Higher computable level)
Subspecies barrier = (0, 0, 0)(1, 1, 1)(2, 2, 1)(3, 0, 0)[100] ~ ψ(χ(1{ω}0)) in FGH (Class 19: Higher computable level)
Second reversed gate number barrier = (0, 0, 0)(1, 1, 1)(2, 2, 1)(3, 3, 0)[100] ~ ψ(Ωχ(1::;0) + 1) in FGH (Class 19: Higher computable level)
Omega reversed gate number barrier = (0, 0, 0)(1, 1, 1)(2, 2, 2)[100] ~ ψ(χ(1{:ω}0)) FGH (Class 19: Higher computable level)
Quadruple catastrophe = (0, 0, 0, 0)(1, 1, 1, 1)[100] ~ ()(1)(2, 1)(3, 2, 1)(4, 3, 2, 1) in dimensional BMS (Class 19: Higher computable level)
Quintuple catastrophe = (0, 0, 0, 0, 0)(1, 1, 1, 1, 1)[100] ~ ()(1)(2, 1)(3, 2, 1)(4, 3, 2, 1)(5, 4, 3, 2, 1) in dimensional BMS (Class 19: Higher computable level)
Unlimited catastrophe = (0, 0, 0, ..., 0)(1, 1, 1, ..., 1)[100] (100 0's, 100 1's) ~ ()(1)(2, 1 ,, 1) in dimensional BMS (Class 19: Higher computable level)
Goplexulusfact = {10, 100 (1 (1) 1) 2} (Class 14: Triple exponentiated polynomial omega level)
Gogridplexulus = {10, 100 (2 (1) 1) 2} (Class 14: Triple exponentiated polynomial omega level)
Gokubikplexulus = {10, 100 (3 (1) 1) 2} (Class 14: Triple exponentiated polynomial omega level)
Gogongulplexulus (formally gogongulusplexulus) = {10, 100 (0, 1 (1) 1) 2} (Class 14: Triple exponentiated polynomial omega level)
Gogongulplexulusfact = {10, 100 (1, 1 (1) 1) 2} (Class 14: Triple exponentiated polynomial omega level)
Gogongridulplexulus = {10, 100 (2, 1 (1) 1) 2} (Class 14: Triple exponentiated polynomial omega level)
Gogongkubikulplexulus = {10, 100 (3, 1 (1) 1) 2} (Class 14: Triple exponentiated polynomial omega level)
Gogongulusdeusplexulus = {10, 100 (0, 2 (1) 1) 2} (Class 14: Triple exponentiated polynomial omega level)
Gogongulustruceplexulus = {10, 100 (0, 3 (1) 1) 2} (Class 14: Triple exponentiated polynomial omega level)
Gobongulplexulus = {10, 100 (0, 0, 1 (1) 1) 2} (Class 14: Triple exponentiated polynomial omega level)
Gotrongulplexulus = {10, 100 (0, 0, 0, 1 (1) 1) 2} (Class 14: Triple exponentiated polynomial omega level)
Goplexulusdeus = {10, 100 ((1)2) 2} (Class 14: Triple exponentiated polynomial omega level)
Goplexulustruce = {10, 100 ((1)3) 2} (Class 14: Triple exponentiated polynomial omega level)
Hyper-gongulusfact = {10, 100 ((1)0, 1) 2} (Class 14: Triple exponentiated polynomial omega level)
Hyper-gingulusfact = {10, 100 ((1)0, 2) 2} (Class 14: Triple exponentiated polynomial omega level)
Hyper-gangulusfact = {10, 100 ((1)0, 3) 2} (Class 14: Triple exponentiated polynomial omega level)
Hyper-bongulusfact = {10, 100 ((1)0, 0, 1) 2} (Class 14: Triple exponentiated polynomial omega level)
Hyper-trongulusfact = {10, 100 ((1)0, 0, 0, 1) 2} (Class 14: Triple exponentiated polynomial omega level)
Goplapulusfact = {10, 100 (1 (1) 1) 2} & 10 (Class 18: Bachmann's collapsing level)
Gogridplapulus = {10, 100 (2 (1) 1) 2} & 10 (Class 18: Bachmann's collapsing level)
Gokubikplapulus = {10, 100 (3 (1) 1) 2} & 10 (Class 18: Bachmann's collapsing level)
Gogolapulplapulus = {10, 100 (0, 1 (1) 1) 2} & 10 (Class 18: Bachmann's collapsing level)
Gogolapulplapulusfact = {10, 100 (1, 1 (1) 1) 2} & 10 (Class 18: Bachmann's collapsing level)
Gogolagridpulplapulus = {10, 100 (2, 1 (1) 1) 2} & 10 (Class 18: Bachmann's collapsing level)
Gogolakubikpulplapulus = {10, 100 (3, 1 (1) 1) 2} & 10 (Class 18: Bachmann's collapsing level)
Gogolapulusdeusplapulus = {10, 100 (0, 2 (1) 1) 2} & 10 (Class 18: Bachmann's collapsing level)
Gogolapulustruceplapulus = {10, 100 (0, 3 (1) 1) 2} & 10 (Class 18: Bachmann's collapsing level)
Gobolapulplapulus = {10, 100 (0, 0, 1 (1) 1) 2} & 10 (Class 18: Bachmann's collapsing level)
Gotrolapulplapulus = {10, 100 (0, 0, 0, 1 (1) 1) 2} & 10 (Class 18: Bachmann's collapsing level)
Goplapulusdeus = {10, 100 ((1)2) 2} & 10 (Class 18: Bachmann's collapsing level)
Goplapulustruce = {10, 100 ((1)3) 2} & 10 (Class 18: Bachmann's collapsing level)
Hyper-golapulusfact = {10, 100 ((1)0, 1) 2} & 10 (Class 18: Bachmann's collapsing level)
Hyper-ginglapulusfact = {10, 100 ((1)0, 2) 2} & 10 (Class 18: Bachmann's collapsing level)
Hyper-ganglapulusfact = {10, 100 ((1)0, 3) 2} & 10 (Class 18: Bachmann's collapsing level)
Hyper-bolapulusfact = {10, 100 ((1)0, 0, 1) 2} & 10 (Class 18: Bachmann's collapsing level)
Hyper-trolapulusfact = {10, 100 ((1)0, 0, 0, 1) 2} & 10 (Class 18: Bachmann's collapsing level)
McMuffin = {4, 4 / 2} = 4 & 4 & 4 & 4 (a. k. a. tetrakulus) (Class 19: Higher computable level)
McGriddles = {5, 5 / 2} = 5 & 5 & 5 & 5 & 5 (a. k. a. pentakulus) (Class 19: Higher computable level)
Filet-O-Fish = {6, 6 / 2} = 6 & 6 & 6 & 6 & 6 & 6 (a. k. a. hexakulus) (Class 19: Higher computable level)
Quarter Pounder = {7, 7 / 2} = 7 & 7 & 7 & 7 & 7 & 7 & 7 (a. k. a. heptakulus) (Class 19: Higher computable level)
McDouble = {8, 8 / 2} = 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 (a. k. a. oktakulus) (Class 19: Higher computable level)
McChicken = {9, 9 / 2} = 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 (a. k. a. ennakulus) (Class 19: Higher computable level)
McRib / Endekulus = {11, 11 / 2} = 11 & 11 & 11 & 11 & 11 & 11 & 11 & 11 & 11 & 11 & 11 (Class 19: Higher computable level)
Bacon King / Dodekulus = {12, 12 / 2} = 12 & 12 & 12 & 12 & 12 & 12 & 12 & 12 & 12 & 12 & 12 & 12 (Class 19: Higher computable level)
Single Stacker King / Triadekulus = {13, 13 / 2} = 13 & 13 & 13 & 13 & 13 & 13 & 13 & 13 & 13 & 13 & 13 & 13 & 13 (Class 19: Higher computable level)
Double Quarter Pounder King / Tetradekulus = {14, 14 / 2} = 14 & 14 & 14 & 14 & 14 & 14 & 14 & 14 & 14 & 14 & 14 & 14 & 14 & 14 (Class 19: Higher computable level)
Double Stacker King / Hexaicosakulus = {26, 26 / 2} = 26 & 26 & 26 & 26 & 26 & 26 & 26 & 26 & 26 & 26 & 26 & 26 & 26 & 26 & 26 & 26 & 26 & 26 & 26 & 26 & 26 & 26 & 26 & 26 & 26 & 26 (Class 19: Higher computable level)
Triple Stacker King / Ennatriantakulus = {39, 39 / 2} = 39 & 39 & 39 & 39 & 39 & 39 & 39 & 39 & 39 & 39 & 39 & 39 & 39 & 39 & 39 & 39 & 39 & 39 & 39 & 39 & 39 & 39 & 39 & 39 & 39 & 39 & 39 & 39 & 39 & 39 & 39 & 39 & 39 & 39 & 39 & 39 & 39 & 39 & 39 (Class 19: Higher computable level)
BBQ Bacon Whopper / Henhectakulus = {101, 101 / 2} = 101 & 101 & 101 ... & 101 (101 101's) (Class 19: Higher computable level)
Fact: BryantOfOrdinals' family talked about this number at the beach because his brother mentioned it. (Referred to the comment in https://www.youtube.com/channel/UCrSVRmLy_HkGcG334vFbvPQ/community?lb=UgkxUlb7kYl44vNcILXWVwV6kzohI2sab8Au)
Bacon and Cheese Whopper / Dyhectakulus = {102, 102 / 2} = 102 & 102 & 102 ... & 102 (102 102's) (Class 19: Higher computable level)
Whopper but it tastes better / Tryhectakulus = {103, 103 / 2} = 103 & 103 & 103 ... & 103 (103 103's) (Class 19: Higher computable level)
Pre-pre-pre-pre-possible Whopper / Four-ex-pre-possible Whopper / Tetryhectakulus = {104, 104 / 2} = 104 & 104 & 104 ... & 104 (104 104's) (Class 19: Higher computable level)
Whopper but it tastes even better / Pentyhectakulus = {105, 105 / 2} = 105 & 105 & 105 ... & 105 (105 105's) (Class 19: Higher computable level)
Whopper but it tastes a lot better / Hexyhectakulus = {106, 106 / 2} = 106 & 106 & 106 ... & 106 (106 106's) (Class 19: Higher computable level)
Whopper but it tastes yummy / Heptyhectakulus = {107, 107 / 2} = 107 & 107 & 107 ... & 107 (107 107's) (Class 19: Higher computable level)
Whopper but it tastes tasty / Octyhectakulus = {108, 108 / 2} = 108 & 108 & 108 ... & 108 (108 108's) (Class 19: Higher computable level)
Whopper but it tastes delicious / Ennyhectakulus = {109, 109 / 2} = 109 & 109 & 109 ... & 109 (109 109's) (Class 19: Higher computable level)
Pre-pre-pre-possible Whopper / Three-ex-pre-possible Whopper / Dekahectakulus = {110, 110 / 2} = 110 & 110 & 110 ... & 110 (110 110's) (Class 19: Higher computable level)
Whopper but it tastes succulent / Endekahectakulus = {111, 111 / 2} = 111 & 111 & 111 ... & 111 (111 111's) (Class 19: Higher computable level)
Whopper but it tastes spicy / Dodekahectakulus = {112, 112 / 2} = 112 & 112 & 112 ... & 112 (112 112's) (Class 19: Higher computable level)
Whopper but it tastes savory / Tridekahectakulus = {113, 113 / 2} = 113 & 113 & 113 ... & 113 (113 113's) (Class 19: Higher computable level)
Whopper but it tastes luscious / Tetradekahectakulus = {114, 114 / 2} = 114 & 114 & 114 ... & 114 (114 114's) (Class 19: Higher computable level)
Whopper but it tastes juicy / Pentadekahectakulus = {115, 115 / 2} = 115 & 115 & 115 ... & 115 (115 115's) (Class 19: Higher computable level)
Whopper but it tastes delightful / Hexadekahectakulus = {116, 116 / 2} = 116 & 116 & 116 ... & 116 (116 116's) (Class 19: Higher computable level)
Whopper but it tastes appetizing / Heptadekahectakulus = {117, 117 / 2} = 117 & 117 & 117 ... & 117 (117 117's) (Class 19: Higher computable level)
Whopper but it tastes the best / Octadekahectakulus = {118, 118 / 2} = 118 & 118 & 118 ... & 118 (118 118's) (Class 19: Higher computable level)
Pre-pre-possible Whopper / Pentaicosahectakulus = {125, 125 / 2} = 125 & 125 & 125 ... & 125 (125 125's) (Class 19: Higher computable level)
Prepossible Whopper / Penantahectakulus = {150, 150 / 2} = 150 & 150 & 150 ... & 150 (150 150's) (Class 19: Higher computable level)
Double Whopper / Dohectakulus = {200, 200 / 2} = 200 & 200 & 200 ... & 200 (200 200's) (Class 19: Higher computable level)
Possible Whopper / Penantadohectakulus = {250, 250 / 2} = 250 & 250 & 250 ... & 250 (250 250's) (a. k. a. Southwestern King) (Class 19: Higher computable level)
Impossible Whopper / Triahectakulus = {300, 300 / 2} = 300 & 300 & 300 ... & 300 (300 300's) (Class 19: Higher computable level)
Double Possible Whopper / Pentahectakulus = {500, 500 / 2} = 500 & 500 & 500 ... & 500 (500 500's) (a. k. a. Whopper Melt) (Class 19: Higher computable level)
Double Impossible Whopper / Hexahectakulus = {600, 600 / 2} = 600 & 600 & 600 ... & 600 (600 600's) (a. k. a. Spicy Whopper Melt) (Class 19: Higher computable level)
Transpossible Whopper / Ennahectakulus = {900, 900 / 2} = 900 & 900 & 900 ... & 900 (900 900's) (Class 19: Higher computable level)
Post-possible Whopper / Dohectachillakulus = {1200, 1200 / 2} = 1200 & 1200 & 1200 ... & 1200 (1200 1200's) (Class 19: Higher computable level)
Trans-trans-possible Whopper / Octahectachillakulus = {1800, 1800 / 2} = 1800 & 1800 & 1800 ... & 1800 (1800 1800's) (Class 19: Higher computable level)
Post-post-possible Whopper / Tetrahectadochillakulus = {2400, 2400 / 2} = 2400 & 2400 & 2400... & 2400 (2400 2400's) (Class 19: Higher computable level)
Trans-trans-trans-possible Whopper / Three-ex-trans-possible Whopper / Heptahectadochillakulus = {2700, 2700 / 2} = 2700 & 2700 & 2700 ... & 2700 (2700 2700's) (Class 19: Higher computable level)
Divine Whopper / Triachillakulus = {3000, 3000 / 2} = 3000 & 3000 & 3000 ... & 3000 (3000 3000's) (Class 19: Higher computable level)
BBQ Bacon Divine Whopper / Hentriachillakulus = {3001, 3001 / 2} = 3001 & 3001 & 3001 ... & 3001 (3001 3001's) (Class 19: Higher computable level)
Post-post-post-possible Whopper / Three-ex-post-possible Whopper / Hexahectatrichillakulus = {3600, 3600 / 2} = 3600 & 3600 & 3600 ... & 3600 (3600 3600's) (Class 19: Higher computable level)
True Divine Whopper / Ennamicrakulus = {9000000, 9000000 / 2} = 9000000 & 9000000 & 9000000 ... & 9000000 (9000000 9000000's) (Class 19: Higher computable level)
Big Divine Whopper / Googolplexulus = {10^10^100, 10^10^100 / 2} (a. k. a. Googolplexikulus) (Class 19: Higher computable level)
Ultimate true mega god foods of all super mega foods / Generakulus = {{10, 10, 10, 10}, {10, 10, 10, 10} / 2} (Class 19: Higher computable level)
Great Divine Whopper / The Whopperkulus = {{10, 100 / 2}, {10, 100 / 2} / 2} (Class 19: Higher computable level)
The Whopperduplex (a. k. a. The Whopperplexplex, The Whopperplusplex, The Whopperplex2, The Whopperbiplex or The Whopperplexian) = {10, {10, {10, 100 / 2} / 2} / 2} (Class 19: Higher computable level)
The Whoppertriplex (a. k. a. The Whopperplexplexplex, The Whopperplusplexplus, The Whopperplexianite or The Whopperplexianth) = {10, {10, {10, {10, 100 / 2} / 2} / 2} / 2} (Class 19: Higher computable level)
Ultimate Highballed Divine Whopper = a & a & a ... & a with a & a & a ... & a a's with a & a & a ... & a a's ... with a & a & a ... & a a's (with a layers) where a = The Whopper (Class 19: Higher computable level)
BBQ Bacon Ultimate Highballed Divine Whopper = a & a & a ... & a with a & a & a ... & a a's with a & a & a ... & a a's ... with a & a & a ... & a a's (with a layers) where a = BBQ Bacon Divine Whopper (Class 19: Higher computable level)
Ultimate Extremeballed Divine Whopper = a & a & a ... & a with a & a & a ... & a a's with a & a & a ... & a a's ... with a & a & a ... & a a's (with a layers) where a = Ultimate Highballed Divine Whopper (Class 19: Higher computable level)
Ultimate Megaballed Divine Whopper = a & a & a ... & a with a & a & a ... & a a's with a & a & a ... & a a's ... with a & a & a ... & a a's (with a layers) where a = Ultimate Extremeballed Divine Whopper (Class 19: Higher computable level)
Gigantic big boowa = {3, 3, {3, 3, 4 / 2} / 2} = {3, 3, great big boowa / 2} (Class 19: Higher computable level)
Gorged boowa = {3, 3, {3, 3, {3, 3, 3 / 2} / 2} / 2} = {3, 3, grand boowa / 2} = {3, 4, 1, 2 / 2} (Class 19: Higher computable level)
Gulp big boowa = {3, 3, {3, 3, {3, 3, 4 / 2} / 2} / 2} = {3, 3, gigantic big boowa / 2} (Class 19: Higher computable level)
Gasp boowa = {3, 3, {3, 3, {3, 3, {3, 3, 3 / 2} / 2} / 2} / 2} = {3, 3, gorged boowa / 2} = {3, 5, 1, 2 / 2} (Class 19: Higher computable level)
Ginormus big boowa = {3, 3, {3, 3, {3, 3, {3, 3, 4 / 2} / 2} / 2} / 2} = {3, 3, gulp big boowa / 2} (Class 19: Higher computable level)
Gargantuan = {10, 10 / 10} = {10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 / 9} (Class 19: Higher computable level)
Nuclear explosion = {10, 100 / 1 / 2} = {10 & 10 & 10 ... 10 / 10 & 10 & 10 ... 10} (100 10's on both sides) (Class 19: Higher computable level)
Letri = {3, 3 / 3, 3 / 3, 3} (Class 19: Higher computable level)
Duletri = {3, 3 (/3) 2} = 3^3 && 3 = X^3 && 3 = X^X && 3 (Class 19: Higher computable level)
Grangulus = 10^100 && 10 = X^100 && 10 = {10, 10 (/100) 2} (Class 19: Higher computable level)
Guapamongaduplex (a. k. a. guapamongaplexplex, guapamongaplusplex, guapamongaplex2, guapamongabiplex or guapamongaplexian) = 10guapamongaplex && (10guapamongaplex & 10) = {10, 10 (/guapamongaplex) 2} (Class 19: Higher computable level)
Guapamongatriplex (a. k. a. guapamongaplexplexplex, guapamongaplusplexplus, guapamongaplexianite or guapamongaplexianth) = 10guapamongaduplex && (10guapamongaduplex & 10) = {10, 10 (/guapamongaduplex) 2} (Class 19: Higher computable level)
Triletri = {3, 3 (/3, 3) 3, 3} (Class 19: Higher computable level)
Legion-tritri-stack = {3, 3, 3 (/3, 3, 3 (3, 3, 3) 3, 3, 3) 3, 3, 3} (Class 19: Higher computable level)
Greagulus = 10^100 &&& 10 = X^100 &&& 10 = {10, 10 (//100) 2} (Class 19: Higher computable level)
Legitri = {3, 3 /// 2} = {3, 3 (1)/ 2} = {L, 3}3, 3 = {L, X}3, 3 (Class 19: Higher computable level)
Gorgegulus = 10^100 &&&&& 10 = X^100 &&&&& 10 = {10, 10 (////100) 2} (Class 19: Higher computable level)
The siren = {10, 10 /(1)//(2)///(3)////(4)/////(5)//////(6)///////(7)////////(8)/////////(9)//////////(0, 1)/// ... /// 2} (100 /'s at the last array) (Class 19: Higher computable level)
Gigantic hoss = {great big hoss, great big hoss, /// ... /// 2} (great big hoss /'s) = {L, great big hoss}great big hoss, great big hoss = {L, X}great big hoss, great big hoss (Class 19: Higher computable level)
Gorged big hoss = {gigantic hoss, gigantic hoss, /// ... /// 2} (gigantic hoss /'s) = {L, gigantic hoss}gigantic hoss, gigantic hoss = {L, X}gigantic hoss, gigantic hoss (Class 19: Higher computable level)
Gulp hoss = {gorged big hoss, gorged big hoss, /// ... /// 2} (gorged big hoss /'s) = {L, gorged big hoss}gorged big hoss, gorged big hoss = {L, X}gorged big hoss, gorged big hoss (Class 19: Higher computable level)
Gasp big hoss = {gulp hoss, gulp hoss, /// ... /// 2} (gulp hoss /'s) = {L, gulp hoss}gulp hoss, gulp hoss = {L, X}gulp hoss, gulp hoss (Class 19: Higher computable level)
Ginormus hoss = {gasp big hoss, gasp big hoss, /// ... /// 2} (gasp big hoss /'s) = {L, gasp big hoss}gasp big hoss, gasp big hoss = {L, X}gasp big hoss, gasp big hoss (Class 19: Higher computable level)
Universal kungulus = {L, X^^^X}10, 100 = {10, 100 A 2} where A is 100^^^100 = X^^^100 = X^^^X array of / signs (note that this is not just 100^^^100 /'s in a row, instead, it's a pentational array of /'s) (Class 19: Higher computable level)
Bileg = {L, L}10, 10 = {10, 10 A 2} where A is the array for dekulus with all 10's changed to / signs and commas deleted, since L itself has a base of {X, X / 2} (Class 19: Higher computable level)
Trileg = {L, L, L}10, 10 (Class 19: Higher computable level)
Loobol = {L, L (1) 2}10, 100 (Class 19: Higher computable level)
Leppol = 10^2 @ 10 = {L, 10 (2) 2}10, 10 (Class 19: Higher computable level)
Lutri = {3, 3 \ 3, 3 \ 3, 3} (Class 19: Higher computable level)
Dulutri = {3, 3 (\3) 2} (Class 19: Higher computable level)
Trilutri = {3, 3 (\3, 3) 3, 3} (Class 19: Higher computable level)
Lugitri = {3, 3 \\\ 2} = {3, 3 (1)\ 2} = {L2, 3}3, 3 = {L2, X}3, 3 (Class 19: Higher computable level)
Grand goshomity = {100, 100 \\\ ... \\\ 2} (good gosomity \'s) = {L2, good goshomity}100, 100 (Class 19: Higher computable level)
Gigantic goshomity = {100, 100 \\\ ... \\\ 2} (grand gosomity \'s) = {L2, great gosomity}100, 100 (Class 19: Higher computable level)
Gorged goshomity = {100, 100 \\\ ... \\\ 2} (gigantic gosomity \'s) = {L2, gigantic gosomity}100, 100 (Class 19: Higher computable level)
Gulp goshomity = {100, 100 \\\ ... \\\ 2} (gorged gosomity \'s) = {L2, gorged goshomity}100, 100 (Class 19: Higher computable level)
Gasp goshomity = {100, 100 \\\ ... \\\ 2} (gulp gosomity \'s) = {L2, gulp goshomity}100, 100 (Class 19: Higher computable level)
Ginormus goshomity = {100, 100 \\\ ... \\\ 2} (gasp gosomity \'s) = {L2, gasp goshomity}100, 100 (Class 19: Higher computable level)
Revive of the Whopper = {10, 100 | 2} (Class 19: Higher computable level)
Revive of Ultimate Extremeballed Divine Whopper = {Ultimate Extremeballed Divine Whopper, Ultimate Extremeballed Divine Whopper (1) 2 | Ultimate Extremeballed Divine Whopper} (Class 19: Higher computable level)
Lagitri = {3, 3 ||| 2} = {3, 3 (1)| 2} = {L3, 3}3, 3 = {L3, X}3, 3 = {LX, X}3, 3 (Class 19: Higher computable level)
Ultimate Omegaballed Divine Whopper = a # a # a ... # a with a # a # a ... # a a's with a # a # a ... # a a's ... with a # a # a ... # a a's (with a layers) where a = Ultimate Megaballed Divine Whopper (Class 19: Higher computable level)
Texas Southwest Nonagintuple BBQ Bacon Spicy Ultimate Omegaballed Divine Whoppertriplex Melt Jr. with Cheese but it tastes the best = {17000, {17000, {17000, {17000, n / 2} / 2} / 2} / 2} where n = Ultimate Omegaballed Divine Whopper (Class 19: Higher computable level)
Ligitri = {3, 3 --- 2} = {3, 3 (1)- 2} = {L4, 3}3, 3 = {L4, X}3, 3 (Class 19: Higher computable level)
Hazukashi Bukuwaha (Japanese: 恥ずかしいブクワハ) (English: Embarrassed Bukuwaha) = {100, 100 E 2} where E is a Quabinga Bukuwaha array of L5 marks (I call it, logion marks). = {L5, Quabinga Bukuwaha}100, 100 = {L5, {L4, {L3, {L2, {L, XX}100, 100}100, 100}100, 100}100, 100}100, 100 (Class 19: Higher computable level)
Crazy childish number = {L(X^^^X), 10}10, 10 (Class 19: Higher computable level)
Meameamealokkabipoowa-arrowa = {{LL100, 10}10, 10, 2, 1, 2} = {meameamealokkabipoowa, meameamealokkabipoowa, meameamealokkabipoowa} = {meameamealokkabipoowa, meameamealokkabipoowa + 1, 2} = {meameamealokkabipoowa, 3 (1) 2} or 3 & meameamealokkabipoowa (Class 19: Higher computable level)
Googol oompa = {{10, 100} & L, 10}10, 10 (Class 19: Higher computable level)
Beef salad = {(Caesar salad)L, Caesar salad}Caesar salad, Caesar salad (Class 19: Higher computable level)
The true poowa = {LLL (curry) LLL (juice) LLL (dim sum) LLL (turnip cake) LLL (mango mochi) LLL (spaghetti bologhese) LLL (soda) LLL, Hainan chicken rice}Caesar salad, bratwurst (Class 19: Higher computable level)
Googolplex oompa = {{10, {10, 100}} & L, 10}10, 10 (Class 19: Higher computable level)
Meameamealokkapoowa oompa-arrowa = {{{L100, 10}10, 10 & L, 10}10, 10, 2, 1, 2} = {meameamealokkapoowa oompa, meameamealokkapoowa oompa, meameamealokkapoowa oompa} = {meameamealokkapoowa oompa, meameamealokkapoowa oompa + 1, 2} = {meameamealokkapoowa oompa, 3 (1) 2} = 3 & meameamealokkapoowa oompa (Class 19: Higher computable level)
Meameamealokkabipoowa oompa = {{LL100, 10}10, 10 [&] L, 10}10, 10 = {{[L, [L, 100]], 10}10, 10 [&] L, 10}10, 10 = {[L, L, 100], 10}10, 10 [&] L, 10}10, 10 (Class 19: Higher computable level)
Meameamealokkabipoowa oompa-arrowa = {{{LL100, 10}10, 10 [&] L, 10}10, 10, 2, 1, 2} = {meameamealokkabipoowa oompa, meameamealokkabipoowa oompa, meameamealokkabipoowa oompa} = {meameamealokkabipoowa oompa, meameamealokkabipoowa oompa + 1, 2} = {meameamealokkabipoowa oompa, 3 (1) 2} = 3 & meameamealokkabipoowa oompa (Class 19: Higher computable level)
Pillowism = 10C10/100 (???)
Graciasion = 10C10/100/10 (???)
Mals = 10C10/100/10/100 (???)
Standation = 10C10/100/10/100/10 (???)
Standiance = 10C10/100/10/100/10/100 (???)
Sampation = 10C10/100/10/100/10/100/10 (???)
Sampiance = 10C10/100/10/100/10/100/10/100 (???)
Conway's Su-tritri = 3 →3 3 [Peter Hurford's extension] (Class 9: Quadratic omega level)
Conway's Su-tritet = 4 →4 4 [Peter Hurford's extension] (Class 9: Quadratic omega level)
Conway's Su-tripent = 5 →5 5 [Peter Hurford's extension] (Class 9: Quadratic omega level)
Conway's Su-trihex = 6 →6 6 [Peter Hurford's extension] (Class 9: Quadratic omega level)
Conway's Su-trisept = 7 →7 7 [Peter Hurford's extension] (Class 9: Quadratic omega level)
Conway's Su-trioct = 8 →8 8 [Peter Hurford's extension] (Class 9: Quadratic omega level)
Conway's Su-triennet = 9 →9 9 [Peter Hurford's extension] (Class 9: Quadratic omega level)
Conway's Su-tridecal = 10 →10 10 [Peter Hurford's extension] (Class 9: Quadratic omega level)
C-tri = C(3, 3, 3) [C(n) function] (Class 10: Polynomial omega level)
C-decal = C(10, 10, 10) [C(n) function] (Class 10: Polynomial omega level)
The HUS = S(U(H(3))) (Class 19: Higher computable level)
Grand HUS = S(S(S(U(U(U(H(H(H(3))))))))) (Class 19: Higher computable level)
Great HUS = S(S(S( ... (S(U(U(U( ... (U(H(H(H( ... (H(3))) ... ))) (with the HUS number of S's, the HUS number of U's, and the HUS number of H's) (Class 19: Higher computable level)
Megamel = 1000000[1000000] = 1000000[[2]] = 1000000[2, 2] = 1000000[2#2] = 1000000 1000000 1000000 ... 1000000 (1,000,000 1000000's) (Class 3)
Gigamel = 1000000000[1000000000] = 1000000000[[2]] = 1000000000[2, 2] = 1000000000[2#2] = 1000000000 1000000000 1000000000 ... 1000000000 (1,000,000,000 1000000000's) (Class 3)
Teramel = 1000000000000[1000000000000] = 1000000000000[[2]] = 1000000000000[2, 2] = 1000000000000[2#2] = 1000000000000 1000000000000 1000000000000 ... 1000000000000 (1,000,000,000,000 1000000000000's) (Class 3)
Petamel = 10^15[10^15] = 10^15[[2]] = 10^15[2, 2] = 10^15[2#2] (Class 3)
Examel = 10^18[10^18] = 10^18[[2]] = 10^18[2, 2] = 10^18[2#2] (Class 3)
Zetamel = 10^21[10^21] = 10^21[[2]] = 10^21[2, 2] = 10^21[2#2] (Class 3)
Yottamel = 10^24[10^24] = 10^24[[2]] = 10^24[2, 2] = 10^24[2#2] (Class 3)
Hectpeta-melpentis = 100[100#5] (Class 8: Linear omega level)
Hecthexa-melhexis = 100[100#6] (Class 8: Linear omega level)
Hecthepta-melheptis = 100[100#7] (Class 8: Linear omega level)
Hectocta-meloctis = 100[100#8] (Class 8: Linear omega level)
Hectenna-melenna = 100[100#9] (Class 8: Linear omega level)
Hectdeka-meldeka = 100[100#10] (Class 8: Linear omega level)
Hecta-pepto-hypermel = 100[100#####100] (Class 8: Linear omega level)
Hecta-dekato-hypermel = 100[100##########100] (Class 8: Linear omega level)
Godder Tritri = 3 [3 {3 / 3} 3] 3 (Class 16: Epsilon level)
More Godder Tritri = 3 [3 {3 / 3 / 3} 3] 3 (Class 17: Binary phi level)
Even More Godder Tritri = 3 [3 {3 /// 3} 3] 3 [FoAN] (Class 17: Binary phi level)
Super Even More Godder Tritri = 3 [3 {3 <3 / 3> 3} 3] 3 (Class 18: Bachmann's collapsing level)
Mega Super Even More Godder Tritri = 3 [3 {3 <3 / 3 / 3> 3} 3] 3 (Class 18: Bachmann's collapsing level)
Omega Mega Super Even More Godder Tritri = 3 [3 {3 // 3} 3] 3 [SoAN] (Class 19: Higher computable level)
Ultimate Omega Mega Super Even More Godder Tritri = 3 [3 {3 /// 3} 3] 3 [HoAN] (Class 19: Higher computable level)
Godly Ultimate Omega Mega Super Even More Godder Tritri = 3 [3 {3 <<<3 <<<3 /// 3>>> 3>>> 3} 3] 3 (Class 19: Higher computable level)
Absolutely Godly Ultimate Omega Mega Super Even More Godder Tritri = 3 [3 {3 \ 3, 3} 3] 3 (Class 19: Higher computable level)
True Absolutely Godly Ultimate Omega Mega Super Even More Godder Tritri = 3 [3 {3 \ 3 \ 3} 3] 3 (Class 19: Higher computable level)
Never True Absolutely Godly Ultimate Omega Mega Super Even More Godder Tritri = 3 [3 {3 {3}\ 3} 3] 3 (Class 19: Higher computable level)
Santic Never True Absolutely Godly Ultimate Omega Mega Super Even More Godder Tritri = 3 [3 {3 {3 \ 3}\ 3} 3 (Class 19: Higher computable level)
G. S. N. T. A. G. U. O. M. S. E. M. G. Tritri = 3 [3 {3 \{{3}} 3} 3 (Class 19: Higher computable level)
M. G. S. N. T. A. G. U. O. M. S. E. M. G. Tritri = 3 [3 {3 \\\ 3 \\\ 3} 3] 3 (Class 19: Higher computable level)
E. M. G. S. N. T. A. G. U. O. M. S. E. M. G. Tritri = 3 [3 {3 \^(3 \^(3 \^(3 \^(3, 3) 3) 3) 3) 3} 3] 3 (Class 19: Higher computable level)
Dollaxul = 200$[0] = 2 * 200 = 400 (Class 1)
Kilodollaxul = 200$[0][0] = (200$[0])$[0] = 400$[0] = 800 (Class 1)
Megadollaxul = 200$[0][0][0] = ((200$[0])$[0])$[0] = 800$[0] = 1,600 (Class 1)
Gigadollaxul = 200$[0][0][0][0] = (((200$[0])$[0])$[0])$[0] = 1,600$[0] = 3,200 (3,200 is the number of characters in a book page in a short story, The Library of Babel, by Jorge Luis Borges about a library that contains all possible 410-page books with a character set of 25 characters (22 letters, spaces, periods, and commas), with 80 lines per book and 40 characters per line.)) (Class 1)
Teradollaxul = 200$[0][0][0][0][0] = ((((200$[0])$[0])$[0])$[0])$[0] = 3,200$[0] = 6,400 (Class 1)
Petadollaxul = 200$[0][0][0][0][0][0] = (((((200$[0])$[0])$[0])$[0])$[0])$[0] = 6,400$[0] = 12,800 (Class 1)
Exadollaxul = 200$[0][0][0][0][0][0][0] = ((((((200$[0])$[0])$[0])$[0])$[0])$[0])$[0] = 12,800$[0] = 25,600 (Class 1)
Hyperdollaxul = 200$[1] = 2^200 * 200 (Class 2)
Grand hyperdollaxul = 200$[2] (Class 6: Tetration level)
Bigrand hyperdollaxul = 200$[3] (Class 7: Up-arrow notation level)
Trigrand hyperdollaxul = 200$[4] (Class 7: Up-arrow notation level)
Quadgrand hyperdollaxul = 200$[5] (Class 7: Up-arrow notation level)
Quintgrand hyperdollaxul = 200$[6] (Class 7: Up-arrow notation level)
Giadollaxul = 200$[200] = 200$[[0]] (Class 7: Up-arrow notation level)
Giabollaxul = 200$[[1]] (Class 8: Linear omega level)
Giatrollaxul = 200$[[2]] (Class 9: Quadratic omega level)
Giaquadrollaxul = 200$[[3]] (Class 10: Polynomial omega level)
Hugedollaxul = 200$[[[0]]] (Class 10: Polynomial omega level)
Hugebollaxul = 200$[[[1]]] (Class 11: Exponentiated linear omega level)
Hugetrollaxul = 200$[[[2]]] (Class 12: Exponentiated polynomial omega level)
Hugequadrollaxul = 200$[[[3]]] (Class 12: Exponentiated polynomial omega level)
Enormadollaxul = 200$[[[[0]]]] (Class 12: Exponentiated polynomial omega level)
Enormabollaxul = 200$[[[[1]]]] (Class 13: Double exponentiated polynomial omega level)
Enormatrollaxul = 200$[[[[2]]]] (Class 13: Double exponentiated polynomial omega level)
Enormaquadrollaxul = 200$[[[[3]]]] (Class 13: Double exponentiated polynomial omega level)
Destrudollaxul = 200$[[0]_2] (Class 15: Iterated Cantor normal form level)
Destrubollaxul = 200$[[1]_2] (Class 16: Epsilon level)
Destrutrollaxul = 200$[[2]_2] (Class 16: Epsilon level)
Destruquadrollaxul = 200$[[3]_2] (Class 16: Epsilon level)
Extremedollaxul = 200$[[0]_3] (Class 18: Bachmann's collapsing level)
Extremebollaxul = 200$[[1]_3] (Class 19: Higher computable level)
Gigantidollaxul = 200$[[0]_4] (Class 19: Higher computable level)
Nucleadollaxul = 200$[[0]_[0]] (Class 19: Higher computable level)
Ginordollaxul = 200$[[0]_{[0]_2}] (Class 19: Higher computable level)
Incompdollaxul = 200$[[0]_{[0]_{[0]}}] (Class 19: Higher computable level)
Bewildollaxul = 200$[[0]_{[0]_{[0]_{[0]}}}] (Class 19: Higher computable level)
Boodollaxul = 200$[0, 1] (Class 19: Higher computable level)
Corpordollaxul = 200$[1, 1] (Class 19: Higher computable level)
Mulpordollaxul = 200$[2, 1] (Class 19: Higher computable level)
Powpordollaxul = 200$[3, 1] (Class 19: Higher computable level)
Terpordollaxul = 200$[4, 1] (Class 19: Higher computable level)
Biggdollaxul = 200$[0, 2] (Class 19: Higher computable level)
Corplodollaxul = 200$[1, 2] (Class 19: Higher computable level)
Mulplodollaxul = 200$[2, 2] (Class 19: Higher computable level)
Baggdollaxul = 200$[0, 3] (Class 19: Higher computable level)
Beegdollaxul = 200$[0, 4] (Class 19: Higher computable level)
Bigdollaxul = 200$[0, 5] (Class 19: Higher computable level)
Boggdollaxul = 200$[0, 6] (Class 19: Higher computable level)
Bagdollaxul = 200$[0, 7] (Class 19: Higher computable level)
Bocgdollaxul = 200$[0, 8] (Class 19: Higher computable level)
Bengdollaxul = 200$[0, 9] (Class 19: Higher computable level)
Bygdollaxul = 200$[0, 10] (Class 19: Higher computable level)
Troodollaxul = 200$[0, 0, 1] (Class 19: Higher computable level)
Triggdollaxul = 200$[0, 0, 2] (Class 19: Higher computable level)
Traggdollaxul = 200$[0, 0, 3] (Class 19: Higher computable level)
Treegdollaxul = 200$[0, 0, 4] (Class 19: Higher computable level)
Trigdollaxul = 200$[0, 0, 5] (Class 19: Higher computable level)
Quadroodollaxul = 200$[0, 0, 0, 1] (Class 19: Higher computable level)
Quadriggdollaxul = 200$[0, 0, 0, 2] (Class 19: Higher computable level)
Quadraggdollaxul = 200$[0, 0, 0, 3] (Class 19: Higher computable level)
Quintoodollaxul = 200$[0, 0, 0, 0, 1] (Class 19: Higher computable level)
Quintiggdollaxul = 200$[0, 0, 0, 0, 2] (Class 19: Higher computable level)
Sextoodollaxul = 200$[0, 0, 0, 0, 0, 1] (Class 19: Higher computable level)
Septoodollaxul = 200$[0, 0, 0, 0, 0, 0, 1] (Class 19: Higher computable level)
Octoodollaxul = 200$[0, 0, 0, 0, 0, 0, 0, 1] (Class 19: Higher computable level)
Nonoodollaxul = 200$[0, 0, 0, 0, 0, 0, 0, 0, 1] (Class 19: Higher computable level)
Decoodollaxul = 200$[0, 0, 0, 0, 0, 0, 0, 0, 0, 1] (Class 19: Higher computable level)
Undecoodollaxul = 200$[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1] (Class 19: Higher computable level)
Dimendollaxul / Outerconstianium = 200$[0 (1) 1] (Class 19: Higher computable level)
Omniversessunians = 200$[0, 0, 0, ..., 0, 1] (10,000,000,000 0's) (Class 19: Higher computable level)
Extremiaunsssiliums = 200$[0, 0, 0, ..., 0, 1] (10 {100} 10 0's) (Class 19: Higher computable level)
Overcroudedamsukuytra = 200$[0, 0, 0, ..., 0, 1] ({10, 10, 10, 10} 0's) where {10, 10, 10, 10} denotes BEAF (Class 19: Higher computable level)
Overcroudedamsukuytetra = 200$[0, 0, 0, ..., 0, 1] ({10, 10, 10, 10, 10} 0's) where {10, 10, 10, 10, 10} denotes BEAF (Class 19: Higher computable level)
Overcroudedamsukuypenta = 200$[0, 0, 0, ..., 0, 1] ({10, 10, 10, 10, 10, 10} 0's) where {10, 10, 10, 10, 10, 10} denotes BEAF (Class 19: Higher computable level)
Overcroudedamsukuydeka = 200$[0, 0, 0, ..., 0, 1] ({10, 11 (1) 2} 0's) where {10, 11 (1) 2} denotes BEAF (Class 19: Higher computable level)
Unixniasomemmicentiums = 200$[0, 0, 0, ..., 0, 1] ({10, 100 (1) 2} 0's) where {10, 100 (1) 2} denotes BEAF (Class 19: Higher computable level)
Overcroudedamsukuyhecta = 200$[0, 0, 0, ..., 0, 1] ({10, 101 (1) 2} 0's) where {10, 101 (1) 2} denotes BEAF (Class 19: Higher computable level)
Unixniasomemmimilliums = 200$[0, 0, 0, ..., 0, 1] ({10, 1000 (1) 2} 0's) where {10, 1000 (1) 2} denotes BEAF (Class 19: Higher computable level)
Unixniasomemmimicriums = 200$[0, 0, 0, ..., 0, 1] ({10, 1000000 (1) 2} 0's) where {10, 1000000 (1) 2} denotes BEAF (Class 19: Higher computable level)
Incrementalmitrasums = 200$[0, 0, 0, ..., 0, 1] ({10, 10 (2) 2} 0's) where {10, 10 (2) 2} denotes BEAF (Class 19: Higher computable level)
Incrementalmitetrasums = 200$[0, 0, 0, ..., 0, 1] ({10, 10 (3) 2} 0's) where {10, 10 (3) 2} denotes BEAF (Class 19: Higher computable level)
Incrementalmipentasums = 200$[0, 0, 0, ..., 0, 1] ({10, 10 (4) 2} 0's) where {10, 10 (4) 2} denotes BEAF (Class 19: Higher computable level)
Incrementalmidekasums = 200$[0, 0, 0, ..., 0, 1] ({10, 10 (9) 2} 0's) where {10, 10 (9) 2} denotes BEAF (Class 19: Higher computable level)
Finitausmitnuiansutjizatalmetafinizlizium = 200$[0, 0, 0, ..., 0, 1] (200$[0, 1] 0's) (Class 19: Higher computable level)
Nestdollaxul = 200$[0 (1[0]) 1] (Class 19: Higher computable level)
Prestige of all end of money = 200$[0 (1[200]) 1] (Class 19: Higher computable level)
Gloomy tritri = 3vvv3 (Class 3)
Gloomy tritet = 4vvvv4 (Class 6: Tetration level)
Gloomy tripent = 5vvvvv5 (Class 7: Up-arrow notation level)
Gloomy trihex = 6vvvvvv6 (Class 7: Up-arrow notation level)
Gloomy trisept = 7vvvvvvv7 (Class 7: Up-arrow notation level)
Gloomy trioct = 8vvvvvvvv8 (Class 7: Up-arrow notation level)
Gloomy triennet = 9vvvvvvvvv9 (Class 7: Up-arrow notation level)
Gloomy tridecal = 10vvvvvvvvvv10 (Class 7: Up-arrow notation level)
Gloomy tricose = 20vvv ... vvv20 (20 down-arrows) (Class 7: Up-arrow notation level)
Gloomy tritriane = 30vvv ... vvv30 (30 down-arrows) (Class 7: Up-arrow notation level)
Gloomy trisarane = 40vvv ... vvv40 (40 down-arrows) (Class 7: Up-arrow notation level)
Gloomy tripenine = 50vvv ... vvv50 (50 down-arrows) (Class 7: Up-arrow notation level)
Gloomy triexine = 60vvv ... vvv60 (60 down-arrows) (Class 7: Up-arrow notation level)
Gloomy triebdomine = 70vvv ... vvv70 (70 down-arrows) (Class 7: Up-arrow notation level)
Gloomy triogdone = 80vvv ... vvv80 (80 down-arrows) (Class 7: Up-arrow notation level)
Gloomy trienenine = 90vvv ... vvv90 (90 down-arrows) (Class 7: Up-arrow notation level)
Gloomy trihect = 100vvv ... vvv100 (100 down-arrows) (Class 7: Up-arrow notation level)
Gloomy trigigas = 500vvv ... vvv500 (500 down-arrows) (Class 7: Up-arrow notation level)
Gloomy trichill = 1,000vvv ... vvv1,000 (1,000 down-arrows) (Class 7: Up-arrow notation level)
Gloomy trimyr = 10,000vvv ... vvv10,000 (10,000 down-arrows) (Class 7: Up-arrow notation level)
Gloomy trigong = 100,000vvv ... vvv100,000 (100,000 down-arrows) (Class 7: Up-arrow notation level)
Gloomy trioctad = 100,000,000vvv ... vvv100,000,000 (100,000,000 down-arrows) (Class 7: Up-arrow notation level)
Gloomy trisedeniad = (10v16)vvv ... vvv(10v16) (10^16 down-arrows) (Class 7: Up-arrow notation level)
Hayden-Giant = E100(#^^#)^(#^^#)^(#^^#)^ ... (#^^#)^#100 (100 #^^#'s) [xE^] (Class 16: Epsilon level)
Onii-chan-Giant = E100#^^#^#^^#^#^^#^ ... #^^#^#100 (100 #^^#'s) [xE^] (Class 18: Bachmann's collapsing level)
Joeligog = E100#{203}#100 = E100#{#}203 [xE^] (Class 18: Bachmann's collapsing level)
Pseuligog (formally pesuligog) = E100#{44435622}#100 = E100#{#}#44435622 [xE^] (Class 18: Bachmann's collapsing level)
Meeting point of the three hierarchies = fθ(Ω_ω)(100) ≈ Hθ(Ω_ω)(100) ≈ gθ(Ω_ω)(100) ≈ {100, 100 / 2} = {L, 1}100, 100 (Class 19: Higher computable level)
Unitetrwek = fψ(K)(10) (Class 19: Higher computable level)
Bitetrwek = fψ(K^K)(10) (Class 19: Higher computable level)
Tritetrwek = fψ(K^K^K)(10) (Class 19: Higher computable level)
Quadritetrwek = fψ(K^K^K^K)(10) (Class 19: Higher computable level)
Quintitetrwek = fψ(K^^5)(10) (Class 19: Higher computable level)
Sextitetrwek = fψ(K^^6)(10) (Class 19: Higher computable level)
Septitetrwek = fψ(K^^7)(10) (Class 19: Higher computable level)
Octitetrwek = fψ(K^^8)(10) (Class 19: Higher computable level)
Nonitetrwek = fψ(K^^9)(10) (Class 19: Higher computable level)
Dekotetrwek = fψ(K^^10)(10) (Class 19: Higher computable level)
Hektotetrwek = fψ(K^^100)(10) (Class 19: Higher computable level)
Kilotetrwek = fψ(K^^1,000)(10) (Class 19: Higher computable level)
Megotetrwek = fψ(K^^10^6)(10) (Class 19: Higher computable level)
Gigotetrwek = fψ(K^^10^9)(10) (Class 19: Higher computable level)
Terotetrwek = fψ(K^^10^12)(10) (Class 19: Higher computable level)
Petotetrwek = fψ(K^^10^15)(10) (Class 19: Higher computable level)
Exotetrwek = fψ(K^^10^18)(10) (Class 19: Higher computable level)
Zettotetrwek = fψ(K^^10^21)(10) (Class 19: Higher computable level)
Yottotetrwek = fψ(K^^10^24)(10) (Class 19: Higher computable level)
Uninwek = fψ(K_K)(10) (Class 19: Higher computable level)
Binwek = fψ(K_K_K)(10) (Class 19: Higher computable level)
Trinwek = fψ(K_K_K_K)(10) (Class 19: Higher computable level)
Quadrinwek = fψ(K_K_K_K_K)(10) (Class 19: Higher computable level)
Quintinwek = fψ(K_K_K_K_K_K)(10) (Class 19: Higher computable level)
Sextinwek = fψ(K_K_K_K_K_K_K)(10) (Class 19: Higher computable level)
Septinwek = fψ(K_K_K_K_K_K_K_K)(10) (Class 19: Higher computable level)
Octinwek = fψ(K_K_K_K_K_K_K_K_K)(10) (Class 19: Higher computable level)
Noninwek = fψ(K_K_K_K_K_K_K_K_K_K)(10) (Class 19: Higher computable level)
Dekinwek = fψ(K_K_K_K_K_K_K_K_K_K_K)(10) (Class 19: Higher computable level)
Hektinwek = fψ(K_K_K_ ... K_K_K)(10) (1001 K's) (Class 19: Higher computable level)
Kilinwek = fψ(K_K_K_ ... K_K_K)(10) (1,001 K's) (Class 19: Higher computable level)
Meginwek = fψ(K_K_K_ ... K_K_K)(10) (1,000,001 K's) (Class 19: Higher computable level)
Giginwek = fψ(K_K_K_ ... K_K_K)(10) (1,000,000,001 K's) (Class 19: Higher computable level)
Terinwek = fψ(K_K_K_ ... K_K_K)(10) (1,000,000,000,001 K's) (Class 19: Higher computable level)
Petinwek = fψ(K_K_K_ ... K_K_K)(10) (10^15 + 1 K's) (Class 19: Higher computable level)
Exinwek = fψ(K_K_K_ ... K_K_K)(10) (10^18 + 1 K's) (Class 19: Higher computable level)
Zettinwek = fψ(K_K_K_ ... K_K_K)(10) (10^21 + 1 K's) (Class 19: Higher computable level)
Yottinwek = fψ(K_K_K_ ... K_K_K)(10) (10^24 + 1 K's) (Class 19: Higher computable level)
fα(n) = Hω^α(n) (when α < ε0)
fα(n) ≈ Hα(n) (when α ≥ ε0)
gθ(Ω_ω)(n) is "happens to be" the first SGH-catching-up-FGH point, according to here.
Note: I insisted that this number is equal to fψ0(ψ_{ω}^3(0))(100) using the fast-growing hierarchy with fundamental sequences using equalities to outputs of Buchholz's function, but later it no longer does. It's because fθ(Ω_α)(n) = fψ0(ψ_{α}^3(0))(n) only works when α < ω.
Crahal = [4, 4, 4] = gc(1) (a. k. a. tritet) (Class 7: Up-arrow notation level)
Little grahal = [2, 3, 12] = F(12) (Class 7: Up-arrow notation level)
Graham-Conway crahal = [4, 4, 4, 2] = gc(2) (a. k. a. tritetplex) (Class 8: Linear omega level)
Little Graham grahal = [2, 3, 12, 2] = F^2(12) (Class 8: Linear omega level)
TriGrahamConway = [4, 4, 4, 3] = gc(3) (a. k. a. tritetduplex) (Class 8: Linear omega level)
TriLittleGraham = [2, 3, 12, 3] = F^3(12) (Class 8: Linear omega level)
Golden crahal = [4, 4, 4, 4] = gc(4) (Class 8: Linear omega level)
Little golden grahal = [2, 3, 12, 4] = F^4(12) (Class 8: Linear omega level)
Great grahal = [3, 3, 4, 10] = G10 (Class 8: Linear omega level)
Quarter Graham = [3, 3, 4, 16] = G16 (Class 8: Linear omega level)
Half Graham = [3, 3, 4, 32] = G32 (Class 8: Linear omega level)
Graham Jr. = [2, 3, 12, 64] = F^64(12) (Class 8: Linear omega level)
Coral = 3A1 = 3 -> 3 -> 3 (a. k. a. tritri) (Class 6: Tetration level)
Grand coral = 3AA3 (Class 9: Quadratic omega level)
Great coral = 3AAA3 (Class 9: Quadratic omega level)
Cyper coral = 3B3 (Class 10: Polynomial omega level)
TriCoral = 3G3 (Class 10: Polynomial omega level)
Golden coral = 3D3 (Class 10: Polynomial omega level)
Coral reef's number = 3W3 (Class 10: Polynomial omega level)
Doomxul = 200![1(1)[<1, 2>1]] (Class 19: Higher computable level)
Kilodoomxul = (200![1(1)[<1, 2>1]])![1(1)[<1, 2>1]] (Class 19: Higher computable level)
Megadoomxul = (((200![1(1)[<1, 2>1]])![1(1)[<1, 2>1]])![1(1)[<1, 2>1]] (Class 19: Higher computable level)
Gigadoomxul = ((((200![1(1)[<1, 2>1]])![1(1)[<1, 2>1]])![1(1)[<1, 2>1]])![1(1)[<1, 2>1]] (Class 19: Higher computable level)
Boomxul = 200![200(200)[<200, 200>200]] (Class 19: Higher computable level)
Kiloboomxul = (200![200(200)[<200, 200>200]])![200(200)[<200, 200>200]] (Class 19: Higher computable level)
Megaboomxul = (((200![200(200)[<200, 200>200]])![1(1)[200(200)[<200, 200>200]])![200(200)[<200, 200>200]] (Class 19: Higher computable level)
Gigaboomxul = ((((200![200(200)[<200, 200>200]])![1(1)[200(200)[<200, 200>200]])![200(200)[<200, 200>200]])![200(200)[<200, 200>200]] (Class 19: Higher computable level)
Kilo-BIGG = (200?)? = BIGG? = BIGG![[<1(BIGG)2>⁅BIGG⁆1]] (Class 19: Higher computable level)
Mega-BIGG = ((200?)?)? = (BIGG?)? = Kilo-BIGG? = Kilo-BIGG![[<1(Kilo-BIGG)2>⁅Kilo-BIGG⁆1]] (Class 19: Higher computable level)
Giga-BIGG = (((200?)?)?)? = ((BIGG?)?)? = Mega-BIGG? = Mega-BIGG![[<1(Mega-BIGG)2>⁅Mega-BIGG⁆1]] (Class 19: Higher computable level)
Absolute CHIME = L((3)) = 10^1,000^1,000^1,000 ... 1,000 (... = 1,000) (Class 6: Tetration level)
Absolute TOLL = L((4)) = 10^10,000^10,000^10,000 ... 10,000 (... = 10,000) (Class 6: Tetration level)
Absolute GONG = L((5)) = 10^100,000^100,000^100,000 ... 100,000 (... = 100,000) (Class 6: Tetration level)
Absolute BONG = L((8)) = 10^(10^8)^(10^8)^(10^8) ... (10^8) (... = 10^8) (Class 6: Tetration level)
Absolute THRONG = L((11)) = 10^(10^11)^(10^11)^(10^11) ... (10^11) (... = 10^11) (Class 6: Tetration level)
Absolute GANDINGAN = L((14)) = 10^(10^14)^(10^14)^(10^14) ... (10^14) (... = 10^14) (Class 6: Tetration level)
Zeriknot = K0, 1(10) (Class 7: Up-arrow notation level)
Uniknot = K1, 1(10) (Class 8: Linear omega level)
Biknot = K2, 1(10) (Class 8: Linear omega level)
Triknot = K3, 1(10) (Class 8: Linear omega level)
Quadriknot = K4, 1(10) (Class 8: Linear omega level)
Quiniknot = K5, 1(10) (Class 8: Linear omega level)
Sextiknot = K6, 1(10) (Class 8: Linear omega level)
Septiknot = K7, 1(10) (Class 8: Linear omega level)
Octiknot = K8, 1(10) (Class 8: Linear omega level)
Noniknot = K9, 1(10) (Class 8: Linear omega level)
Dekiknot = K10, 1(10) (Class 8: Linear omega level)
Zeri-suknot = K0, 2(10) (Class 8: Linear omega level)
Zeri-meknot = K0, 3(10) (Class 8: Linear omega level)
Zeri-giknot = K0, 4(10) (Class 8: Linear omega level)
Zeri-teknot = K0, 5(10) (Class 8: Linear omega level)
Zeri-peknot = K0, 6(10) (Class 8: Linear omega level)
Zeri-exknot = K0, 7(10) (Class 8: Linear omega level)
Zeri-zeknot = K0, 8(10) (Class 8: Linear omega level)
Zeri-yoknot = K0, 9(10) (Class 8: Linear omega level)
Ortritri = (3 {1, 3} 3) = 3^3 = 27 (Class 1)
Nortritri = (3 {2, 3} 3) = 3^^^3 (a. k. a. tritri) (Class 6: Tetration level)
Andtritri = (3 {3, 3} 3) = CG(3) = 3 -> 3 -> 3 = nortritri (Class 6: Tetration level)
Nandtritri = (3 {4, 3} 3) = 3AAA3 (Class 9: Quadratic omega level)
Xortritri = (3 {5, 3} 3) = 3BBB3 (Class 10: Polynomial omega level)
Xnortritri = (3 {6, 3} 3) = 3GGG3 (Class 10: Polynomial omega level)
Notritri = (3 {7, 3} 3) = 3DDD3 (Class 10: Polynomial omega level)
Element hydrogen / Diatomic hydrogen = p{H} = p{H_{2}} = 1 * 1 = 1 (Class 0)
Helium = p{He} = 2 (Class 0)
Lithium = p{Li} = 3 (Class 0)
Beryllium = p{Be} = 4 (Class 0)
Boron = p{B} = 5 (Class 0)
Carbon / Graphite / Diamond / Methane / Marsh gas = p{C} = p{CH_{4}} = 6 * 1 * 1 * 1 * 1 = 6 (Class 1)
Element nitrogen = p{N} = 7 (Class 1)
Element oxygen / Water / Water vapor / Ice / Dihydrogen monoxide = p{O} = p{H_{2}O} = 1 * 1 * 8 = 8 (Class 1)
Fluorine / Hydrogen fluoride = p{F} = p{HF} = 1 * 9 = 9
Neon = p{Ne} = 10 (Class 1)
Sodium / Natrium = p{Na} = 11 (Class 1)
Magnesium = p{Mg} = 12 (Class 1)
Aluminium = p{Al} = 13 (Class 1)
Silicon = p{Si} = 14 (Class 1)
Phosphorus = p{P} = 15 (Class 1)
Element sulfur / Hydrogen sulfide = p{S} = p{H_{2}S} = 1 * 1 * 16 = 16 (Class 1)
Chlorine / Hydrochloric acid / Hydrogen chloride / Digestive juice / Gastric acid = p{Cl} = p{HCl} = 1 * 17 = 17 (Class 1)
Argon = p{Ar} = 18 (Class 1)
Potassium / Kalium = p{K} = 19 (Class 1)
Calcium = p{Ca} = 20 (Class 1)
Scandium = p{Sc} = 21 (Class 1)
Titanium = p{Ti} = 22 (Class 1)
Vanadium = p{V} = 23 (Class 1)
Chromium / Lithium hydroxide = p{Cr} = p{LiOH} = 3 * 8 * 1 = 24 (Class 1)
Manganese = p{Mn} = 25 (Class 1)
Iron / Ferrum = p{Fe} = 26 (Class 1)
Cobalt = p{Co} = 27 (Class 1)
Nickel = p{Ni} = 28 (Class 1)
Copper / Cuprum = p{Cu} = 29 (Class 1)
Zinc = p{Zn} = 30 (Class 1)
Gallium = p{Ga} = 31 (Class 1)
Germanium = p{Ge} = 32 (Class 1)
Arsenic = p{As} = 33 (Class 1)
Selenium = p{Se} = 34 (Class 1)
Bromine / Hydrogen bromide = p{Br} = p{HBr} = 35 * 1 = 35 (Class 1)
Krypton / Ethane = p{Kr} = p{C_{2}H_{6}} = 6 * 6 * 1 * 1 * 1 * 1 * 1 * 1 = 36 (Class 1)
Rubidium = p{Rb} = 37 (Class 1)
Strontium = p{Sr} = 38 (Class 1)
Yttrium = p{Y} = 39 (Class 1)
Zirconium = p{Zr} = 40 (Class 1)
Niobium = p{Nb} = 41 (Class 1)
Molybdenum / Hydrogen cyanide = p{Mo} = p{HCN} = 1 * 6 * 7 = 42 (Class 1)
Technetium = p{Tc} = 43 (Class 1)
Ruthenium = p{Ru} = 44 (Class 1)
Rhodium = p{Rh} = 45 (Class 1)
Palladium = p{Pd} = 46
Silver = p{Ag} = 47
Cadmium / Carbon monoxide / Formaldehyde = p{Cd} = p{CO} = p{CH_{2}O} = 6 * 8 = 6 * 1 * 1 * 8 = 48 (Class 1)
Indium / Nitrogen = p{In} = p{N_{2}} = 7 * 7 = 49 (Class 1)
Tin = p{Sn} = 50 (Class 1)
Antimony / Litium chloride = p{Sb} = p{LiCl} = 3 * 17 = 51 (Class 1)
Tellurium = p{Te} = 52 (Class 1)
Iodine element / Hydrogen iodide = p{I} = p{HI} = 1 * 53 = 53 (Class 1)
Xenon = p{Xe} = 54 (Class 1)
Caesium = p{Cs} = 55 (Class 1)
Barium / Nitrogen monoxide / Ammonia solution = p{Ba} = p{NO} = p{NH_{4}OH} = 7 * 8 = 7 * 1 * 1 * 1 * 1 * 8 * 1 = 56 (Class 1)
Lanthanum = p{La} = 57 (Class 1)
Cerium = p{Ce} = 58 (Class 1)
Praseodymium = p{Pr} = 59 (Class 1)
Neodymium = p{Nd} = 60 (Class 1)
Promethium = p{Pm} = 61 (Class 1)
Samarium = p{Sm} = 62 (Class 1)
Europium = p{Eu} = 63 (Class 1)
Gadolinium / Oxygen / Hydrogen peroxide = p{Gd} = p{O_{2}} = p{H_{2}O_{2}} = 8 * 8 = 1 * 1 * 8 * 8 = 64 (Class 1)
Terbium = p{Tb} = 65 (Class 1)
Dysprosium = p{Dy} = 66 (Class 1)
Holmium = p{Ho} = 67 (Class 1)
Erbium = p{Er} = 68 (Class 1)
Thulium = p{Tm} = 69 (Class 1)
Ytterbium = p{Yb} = 70 (Class 1)
Lutetium = p{Ly} = 71 (Class 1)
Hafnium = p{Hf} = 72 (Class 1)
Tantalum = p{Ta} = 73 (Class 1)
Tungsten = p{W} = 74 (Class 1)
Rhenium = p{Re} = 75 (Class 1)
Osmium = p{Os} = 76 (Class 1)
Irdium = p{Ir} = 77 (Class 1)
Platinum / Lithium oxide = p{Pt} = {Li_{2}O} = 3 * 3 * 8 = 78 (Class 1)
Gold = p{Au} = 79 (Class 1)
Mercury = p{Hg} = 80 (Class 1)
Thallium = p{Tl} = 81 (Class 1)
Lead / Plumbum = p{Pb} = 82 (Class 1)
Bismuth = p{Bi} = 83 (Class 1)
Polonium = p{Po} = 84 (Class 1)
Astatine = p{At} = 85 (Class 1)
Radon = p{Rn} = 86 (Class 1)
Francium = p{Fr} = 87 (Class 1)
Radium / Sodium hydroxide / Caustic soda = p{Ra} = p{NaOH} = 11 * 8 * 1 = 88 (Class 1)
Actinium = p{Ac} = 89 (Class 1)
Thorium = p{Th} = 90 (Class 1)
Protactinium = p{Pa} = 91 (Class 1)
Uranium = p{U} = 92 (Class 1)
Neptunium = p{Np} = 83 (Class 1)
Plutonium = p{Pu} = 94 (Class 1)
Americium = p{Am} = 95 (Class 1)
Curium / Magnesium oxide = p{Cm} = p{MgO} = 12 * 8 = 96 (Class 1)
Berkelium = p{Bk} = 97 (Class 1)
Californium = p{Cf} = 98 (Class 1)
Einsteinium = p{Es} = 99 (Class 1)
Fermium = p{Fm} = 100 (Class 1)
Mendelevium = p{Md} = 101 (Class 1)
Nobelium = p{No} = 102 (Class 1)
Lawrencium = p{Lr} = 103 (Class 1)
Rutherfordium = p{Rf} = 104 (Class 1)
Dubnium = p{Db} = 105 (Class 1)
Seaborgium = p{Sg} = 106 (Class 1)
Bohrium = p{Bh} = 107 (Class 1)
Hassium = p{Hs} = 108 (Class 1)
Meitnerium = p{Mt} = 109 (Class 1)
Darmstadtium / Ununnilium = p{Ds} = 110 (Class 1)
Roentgenium / Unununium = p{Rg} = 111 (Class 1)
Copernicium / Ununbium = p{Cn} = 112 (Class 1)
Nihonium / Ununtrium = p{Nh} = 113 (Class 1)
Flerovium / Ununquadium = p{Fl} = 114 (Class 1)
Moscovium / Ununpentium = p{Mc} = 115 (Class 1)
Livermorium / Ununhexium = p{Lv} = 116 (Class 1)
Tennessine / Ununseptium = p{Ts} = 117 (Class 1)
Oganesson / Element-118 / Ununoctium = p{Og} = 118 (Class 1)
Sulfur dioxide = p{SO_{2}} = 16 * 8 = 128 (Class 1)
Hypochlorous acid = p{HClO} = 1 * 17 * 8 = 136 (Class 1)
Potassium hydroxide = p{KOH} = 19 * 8 * 1 = 152 (Class 1)
Sodium chloride = p{NaCl} = 11 * 17 = 187 (Class 1)
Propane = p{C_{3}H_{8}} = 6 * 6 * 6 * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1 = 216 (Class 1)
Copper(II) oxide / Cupric oxide = p{CuO} = 29 * 8 = 232 (Class 1)
Ethanol / Ethanal / Acetaldehyde = p{C_{2}H_{6}O} = p{C_{2}H_{4}O} = 6 * 6 * 1 * 1 * 1 * 1 * 1 * 1 * 8 = 6 * 6 * 1 * 1 * 1 * 1 * 8 = 288 (Class 1)
Rubidium hydroxide = p{RbOH} = 37 * 8 * 1 = 296 (Class 1)
Potassium chloride = p{KCl} = 19 * 17 = 323 (Class 1)
Carbon dioxide = p{CO_{2}} = 6 * 8 * 8 = 384 (Class 1)
Nitrous oxide = p{N_{2}O} = 7 * 7 * 8 = 392 (Class 1)
Iron(II) sulfide = p{FeS} = 26 * 16 = 416 (Class 1)
Caesium hydroxide = p{CsOH} = 55 * 8 * 1 = 440 (Class 1)
Nitrogen dioxide / Hydroperoxyl / Hydrogen superoxide / Smog / Photochemical smog / Nitrite-nitrogen = p{NO_{2}} = 7 * 8 * 8 = 448 (Class 1)
Ozone = p{O_{3}} = 8 * 8 * 8 = 512 (Class 1)
Mercury oxide = p{HgO} = 80 * 8 = 640 (Class 1)
Francium hydroxide = p{FrOH} = 87 * 8 * 1 = 696 (Class 1)
Nichrome = p{NiCr} = 28 * 24 = 672 (Class 1)
Magnesium hydroxide = p{Mg(OH)_{2}} = 12 * (8 * 1)^2 = 768 (Class 1)
Silver chloride = p{AgCl} = 47 * 17 = 799 (Class 1)
Silicon dioxide / Sand / Glass = p{SiO_{2}} = 14 * 8 * 8 = 896 (Class 1)
Potassium iodide / Iodized salt = p{KI} = 19 * 53 = 1,007 (Class 1)
Butane = p{C_{4}H_{10}} = 6 * 6 * 6 * 6 * (1^10) = 1,296 (Class 1)
Lime water / Calcium hydroxide / Slaked lime = p{Ca(OH)_{2}} = 20 * (8 * 1)^2 = 1,280 (Class 1)
Bronze = p{CuSn} = 29 * 50 = 1,450 (Class 1)
Bleach / Sodium hypochlorite = p{NaClO} = 11 * 17 * 8 = 1,496 (Class 1)
Propanone / Acetone = p{(CH_{3})_{2}CO} = (6 * 1 * 1 * 1)^2 * 6 * 8 = 1,728 (Class 1)
Selenium dioxide = p{SeO_{2}} = 34 * 8 * 8 = 2,176 (Class 1)
Ethanoic acid = p{CH_{3}COOH} = 6 * 1 * 1 * 1 * 6 * 8 * 8 * 1 = 2,304 (Class 1)
Iodine solution = p{I_{2}} = 53 * 53 = 2,809 (Class 1)
Magnesium chloride = p{AlCl_{3}} = 11 * 17 * 17 = 2,816 (Class 1)
Carbonic acid = p{H_{2}CO_{3}} = 1 * 1 * 6 * 8 * 8 * 8 = 3,072 (Class 1)
Magnesium chloride = p{MgCl_{2}} = 12 * 17 * 17 = 3,468 (Class 1)
Nitric acid / Barium hydroxide = p{HNO_{3}} = p{Ba(OH)_{2}} = 1 * 7 * 8 * 8 * 8 = 56 * (8 * 1)^2 = 3,584 (Class 1)
Calcium chloride = p{CaCl_{2}} = 20 * 17 * 17 = 5,780 (Class 1)
Pentane = p{C_{5}H_{12}} = 6 * 6 * 6 * 6 * 6 * (1^12) = 7,776 (Class 1)
Cobalt chloride / Cobalt(II) chloride = p{CoCl_{2}} = 27 * 17 * 17 = 7,803 (Class 1)
Copper chloride / Copper(II) chloride = p{CuCl_{2}} = 29 * 17 * 17 = 8,381 (Class 1)
Volatile organic compounds / VOC = p{C_{2}H_{2}Cl_{2}} = 6 * 6 * 1 * 1 * 17 * 17 = 10,404 (Class 1)
Strontium chloride = p{SrCl_{2}} = 38 * 17 * 17 = 10,982 (Class 1)
Dinitrogen disulfide = p{S_{2}N_{2}} = 16 * 16 * 7 * 7 = 12,544 (Class 1)
Barium chloride = p{BaCl_{2}} = 56 * 17 * 17 = 16,184 (Class 1)
Silver oxide = p{Ag_{2}O} = 47 * 47 * 8 = 17,672 (Class 1)
Calcium bromide = p{CaBr_{2}} = 20 * 35 * 35 = 24,500 (Class 1)
Dinitrogen trioxide = p{N_{2}O_{3}} = 7 * 7 * 8 * 8 * 8 = 25,088 (Class 1)
Lithium carbonate / Lithium hydrogencarbonate / Lithium bicarbonate = p{Li_{2}CO_{3}} = p{Li_{2}HCO_{3}} = 3 * 3 * 6 * 8 * 8 * 8 = 3 * 3 * 1 * 6 * 8 * 8 * 8 = 27,648 (Class 1)
Sodium hydrogencarbonate = p{NaHCO_{3}} = 11 * 1 * 6 * 8 * 8 * 8 = 33,792 (Class 1)
Sodium nitrate = p{NaNO_{3}} = 11 * 7 * 8 * 8 * 8 = 39,424
Hexane = p{C_{6}H_{14}} = 6 * 6 * 6 * 6 * 6 * 6 * (1^14) = 46,656 (Class 1)
Calcium carbonate / Marble / Limestone / Chalk / Cement = p{CaCO_3} = 20 * 6 * 8 * 8 * 8 = 61,440 (Class 1)
Alunminium chloride = p{AlCl_{3}} = 13 * 17 * 17 * 17 = 63,689 (Class 1)
Sulfuric acid = p{H_{2}SO_{4}} = 1 * 1 * 17 * 8 * 8 * 8 * 8 = 65,536 (Class 1)
Potassium nitrate = p{KNO_{3}} = 19 * 7 * 8 * 8 * 8 = 68,096 (Class 1)
Aluminum oxide = p{Al_{2}O_{3} = 13 * 13 * 8 * 8 * 8 = 86,528 (Class 1)
Lactic acid / Dihydroxyacetone / Dimethyl carbonate / Glyceraldehyde / 3-hydroxypropionic acid / 1,2,4-trioxane / 1,3,5-trioxane = p{C_{3}H_{6}O_{3}} = 6 * 6 * 6 * 1 * 1 * 1 * 1 * 1 * 1 * 8 * 8 * 8 = 110,592 (Class 1)
Iron(III) chloride = p{FeCl_{3}} = 26 * 17 17 * 17 = 127,738 (Class 1)
Oxalic acid = p{C_{2}H_{2}O_{4}} = 6 * 6 * 1 * 1 * 8 * 8 * 8 * 8 = 147,456 (Class 1)
Silver nitrate = p{AgNO_{3}} = 27 * 7 * 8 * 8 * 8 = 168,448 (Class 1)
Dinitrogen tetroxide = p{N_{2}O_{4}} = 7 * 7 * 8 * 8 * 8 * 8 = 200,704 (Class 1)
Heptane = p{C_{7}H_{16}} = 6 * 6 * 6 * 6 * 6 * 6 * 6 * (1^16) = 279,936 (Class 1)
Red iron oxide = p{Fe_{2}O_{3}} = 26 * 26 * 8 * 8 * 8 = 346,112 (Class 1)
Sodium carbonate = p{Na_{2}CO_{3}} = 11 * 11 * 6 * 8 * 8 * 8 = 371,712 (Class 1)
Calcium sulfate = p{CaSO_{4}} = 20 * 16 * 8 * 8 * 8 * 8 = 1,310,720 (Class 2)
Dinitrogen pentoxide = p{N_{2}O_{5}} = 7 * 7 * 8 * 8 * 8 * 8 * 8 = 1,605,632 (Class 2)
Octane = p{C_{8}H_{18}} = 6 * 6 * 6 * 6 * 6 * 6 * 6 * 6 * (1^18) = 1,679,616 (Class 2)
Copper sulfate / Copper(II) sulfate = p{CuSO_{4}} = 29 * 16 * 8 * 8 * 8 * 8 = 1,900,544 (Class 2)
Wine / 3-mercaptohexan-1-ol= p{C_{6}H_{14}OS} = (6^6) * (1^14) * 8 * 16 = 5,971,968 (Class 2)
Sodium sulfate = p{Na_{2}SO_{4}} = 11 * 11 * 16 * 8 * 8 * 8 * 8 = 7,929,856 (Class 2)
Sulfur hexafluoride = p{SF_{6}} = 16 * 9 * 9 * 9 * 9 * 9 * 9 = 8,503,056 (Class 2)
Nonane = p{C_{9}H_{20}} = 6 * 6 * 6 * 6 * 6 * 6 * 6 * 6 * 6 * 6 * (1^20) = 10,077,696 (Class 2)
Thiosulfate = p{Na_{2}S_{2}O_{3}} = 11 * 11 * 16 * 16 * 8 * 8 * 8 * 8 = 15,859,712 (Class 2)
Brass = p{Cu_{3}Zn_{3} = 29 * 29 * 29 * 30 * 30 = 21,950,100 (Class 2)
Potassium sulphate = p{K_{2}SO_{4}} = 19 * 19 * 16 * 8 * 8 * 8 * 8 = 23,658,496 (Class 2)
Decane = p{C_{10}H_{22}} = (6^10) * (1^22) = 60,466,176 (Class 2)
Calcium nitrate = p{Ca(NO_{3})_{2}} = 20 * (7 * 8 * 8 * 8)^2 = 256,901,120 (Class 2)
Copper(II) nitrate = p{Cr(NO_{3})_{2}} = 29 * (7 * 8 * 8 * 8)^2 = 372,506,624 (Class 2)
Methamphetamine / Cocaine = p{C_{10}H_{15}N} = (6^10) * (1^15) * 7 = 423,263,232 (Class 2)
Nicotine = p{C_{10}H_{14}N_{2}} = (6^10) * (1^14) * 2 * 2 = 2,962,842,624 (Class 2)
Sulfur = p{S_{8}} = 16 * 16 * 16 * 16 * 16 * 16 * 16 * 16 = 4,294,967,296 (Class 2)
Litmus = p{C_{7}H_{7}O_{4}N} = 6 * 6 * 6 * 6 * 6 * 6 * 6 * 1 * 1 * 1 * 1 * 1 * 1* 1 * 8 * 8 * 8 * 8 * 7 = 8,026,324,992 (Class 2)
Sodium hexafluoride = p{Na_{3}AlF_{6}} = 11 * 11 * 11 * 13 * 9 * 9 * 9 * 9 * 9 * 9 = 9,195,523,623 (Class 2)
Glucose / Galactose / Fructose / Triglyceride / Vitamin C = p{C_{6}H_{12}O_{6}} = p{C_{6}H_{8}O_{6}} = 6 * 6 * 6 * 6 * 6 * 6 * (1^12) * 8 * 8 * 8 * 8 * 8 * 8 = 6 * 6 * 6 * 6 * 6 * 6 * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 8 * 8 * 8 * 8 * 8 * 8 = 12,230,590,464 (Class 2)
Aspirin = p{C_{9}H_{8}O_{4}} = 6 * 6 * 6 * 6 * 6 * 6 * 6 * 6 * 6 * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 8 * 8 * 8 * 8 = 41,278,242,816 (Class 2)
Citric acid = p{C_{6}H_{8}O_{7}} = 6 * 6 * 6 * 6 * 6 * 6 * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 8 * 8 * 8 * 8 * 8 * 8 * 8 = 97,844,723,712 (Class 2)
Shale / Kaolin = p{Al_{2}Si_{2}O_{5}(OH)_{4}} = 13 * 13 * 14 * 14 * 8 * 8 * 8 * 8 * 8 * (8 * 1)^4 = 4,445,828,022,272 (Class 2)
Amylase = p{C_{9}H_{14}N_{4}O_{3}} = 6 * 6 * 6 * 6 * 6 * 6 * 6 * 6 * 6 * (1^14) * 7 * 7 * 7 * 7 * 8 * 8 * 8 = 12,388,632,625,152 (Class 2)
Cough syrup / Dextromethorphan = p{C_{18}H_{25}NO} = (6^18) * (1^25) * 7 * 8 = 5,687,357,573,431,296 (Class 2)
Sedative / Diazepam = p{C_{16}H_{13}ClN_{2}O} = (6^16) * (1^13) * 17 * 7 * 7 * 8 = 18,799,876,423,286,784 (Class 2)
Vitamin A / Retinol = p{C_{20}H_{30}O} = (6^20) * (1^30) * 8 = 29,249,267,520,503,808 (Class 2)
Dichloro-diphenyl-trichloroethane / DDT = p{C_{14}H_{9}Cl_{5}} = (6^14) * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 1 * 17 * 17 * 17 * 17 * 17 = 111,265,906,940,854,272 (Class 2)
Eicosapentaenoic acid = p{C_{20}H_{30}O_{2}} = (6^20) * (1^30) * 8 * 8 = 233,994,140,164,030,464 (Class 2)
Marijuana / Cannabidiol / CBD = p{C_{21}H_{30}O_{2}} = (6^21) * (1^30) * 8 * 8 = 1,403,964,840,984,182,784 (Class 2)
Opioid / Oxycontin = p{C_{18}H_{21}NO{4}} = (6^18) * (1^21) * 7 * 8 * 8 * 8 * 8 = 2,911,927,077,596,823,552 (Class 2)
Docosahexaenoic acid = p{C_{22}H_{32}O_{2}} = (6^22) * (1^32) * 8 * 8 = 8,423,789,045,905,096,704 (Class 2)
Phenolphthalein = p{C_{20}H_{14}O_{4}} = (6^20) * (1^14) * 8 * 8 * 8 * 8 = 14,975,624,970,497,949,696 (Class 2)
Disaccharide / Maltose / Lactose / Sucrose / Sugar = p{C_{12}H_{12}O_{11}} = (6^12) * (1^22) * (8^11) = 18,698,417,887,260,966,912 (Class 2)
Cresolphthalein = p{C_{22}H_{18}O_{4}} = (6^22) * (1^18) * 8 * 8 * 8 * 8 = 539,122,498,937,926,189,056 (Class 2)
Monoglycerides = p{C_{21}H_{42}O_{5}} = (6^21) * (1^42) * 8 * 8 * 8 * 8 * 8 = 718,829,998,583,901,585,408 (Class 2)
Bile = p{C_{24}H_{40}O_{5}} = (6^24) * (1^40) * 8 * 8 * 8 * 8 * 8 = 155,267,279,694,122,742,448,128 (Class 2)
Vitamin E / Alpha-tocopherol = p{C_{29}H_{50}O_{2}} = (6^29) * (1^50) * 8 * 8 = 2,358,121,810,354,489,150,930,944 (Class 2)
Vitamin D3 / Ergocalciferol = p{C_{27}H_{44}O} = (6^27) * (1^44) * 8 = 8,187,922,952,619,753,996,288 (Class 2)
Vitamin D2 / Cholecalciferol = p{C_{28}H_{44}O} = (6^28) * (1^44) * 8 = 49,127,537,715,718,523,977,728 (Class 2)
Thyroxine = p{C_{15}H_{11}I_{4}NO_{4}} = (6^15) * (1^11) * 53 * 53 * 53 * 53 * 7 * 8 * 8 * 8 * 8 = 106,372,709,625,755,842,117,632 (Class 2)
Thymolphthalein = p{C_{28}H_{30}O_{4}} = (6^28) * (1^30) * 8 * 8 * 8 * 8 = 25,153,299,310,447,884,276,596,734 (Class 2)
Trisaccharide = p{C_{18}H_{32}O_{16}} = (6^18) * (1^32) * (8^16) = 28,586,586,437,977,626,124,165,840,896 (Class 2)
Heme = p{C_{34}H_{32}FeN_{4}O_{4}} = (6^32) * (1^32) * 26 * 7 * 7 * 7 * 7 * 8 * 8 * 8 * 8 = 2,035,004,942,129,209,432,510,672,882,630,656 ≈ 2.035004942129209432510672882630656 * 10^33 (Class 2)
Polypeptide = p{C_{20}H_{32}O_{9}N_{7}} = (6^20) * (1^32) * (8^11) * (7^10) ≈ 8.871463391009494258138898610782208 * 10^33
Glycogen / Amylase = p{C_{24}H_{42}O_{21}} = p{C_{24}H_{44}O_{21}} = (6^24) * (1^42) * (8^21) = (6^24) * (1^44) * (8^21) ≈ 4.3703853935830110189947501702144851968 * 10^37 (Class 2)
Vitamin B12 = p{C_{63}H_{88}CoN_{14}O_{14}P} = (6^63) * (1^88) * 27 * (7^14) * (8^14) * 15 ≈ 1.27531120504915311791081776339245020671631482216702821554307 * 10^76 (Class 2)
Peptide = p{C_{69}H_{114}N_{18}O_{22}S} = (6^69) * (1^114) * (7^18) * (8^22) * 16 ≈ 9.46892536048671766281364991491140595374469184477618999520631 * 10^89 (Class 2)
Tannic acid = p{C_{76}H_{52}O_{46}} = (6^76) * (1^52) * (8^46) ≈ 4.8043477019974113003995756899177734735901225789096352961080 * 10^100 (Class 2)
Bituminous coal = p{C_{137}H_{97}O{9}NS} = (6^137) * (1^97) * 8 * 8 * 8 * 8 * 8 * 8 * 8 * 8 * 8 * 7 * 16 ≈ 6.0778392320563252888861432794059586844639561926701949651630 * 10^116 (Class 2)
High-grade anthracite = p{C{240}H{90}O{4}NS} = (6^240) * (1^90) * 8 * 8 * 8 * 8 * 7 * 16 ≈ 2.6174480015973558261134999665837759966627514872120757104610 * 10^192 (Class 2)
Titin = p{C{169,719}H{270,466}N{45,688}O{52,238}S{911}} = (6^169,719) * (1^270,466) * (7^45,688) * (8^52,238) * (16^911) ≈ 2.87978932614574830091222877668857819443168693948455314831 * 10^218950 (Class 2)
Super debut = [1, 48] = [48^48] ≈ 48^(5.007 * 10^80) ≈ 10^10^80.925 (Class 3)
Hayden = 999[999] = M(999, 997) (Class 7: Up-arrow notation level)
Grand Hayden = 1,000[999] = M(1000, 997) (Class 7: Up-arrow notation level)
Great Hayden = 1,001[999] = M(1001, 997) (Class 7: Up-arrow notation level)
Gong Hayden = 1,002[999] = M(1002, 997) (Class 7: Up-arrow notation level)
Hexo-Hayden = 1,003[999] = M(1003, 997) (Class 7: Up-arrow notation level)
Hepto-Hayden = 1,004[999] = M(1004, 997) (Class 7: Up-arrow notation level)
Mega Hayden = 1,007[999] = M(1007, 997) (Class 7: Up-arrow notation level)
A-Hayden = 999[1000] = M(999, 998) (Class 7: Up-arrow notation level)
Grand Mega Hayden / B-Hayden = 1,000[1000] = M(1000, 998) (Class 7: Up-arrow notation level)
Great Mega Hayden / C-Hayden = 1,001[1000] = M(1001, 998) (Class 7: Up-arrow notation level)
Gong Mega Hayden / D-Hayden = 1,002[1000] = M(1002, 998) (Class 7: Up-arrow notation level)
Hexo-Mega Hayden / E-Hayden = 1,003[1000] = M(1003, 998) (Class 7: Up-arrow notation level)
Hepto-Mega Hayden / F-Hayden = 1,004[1000] = M(1004, 998) (Class 7: Up-arrow notation level)
Beto-Hayden = 999[1001] = M(999, 999) (Class 7: Up-arrow notation level)
Gamo-Hayden = 1,000[1001] = M(1000, 999) (Class 7: Up-arrow notation level)
Delo-Hayden = 1,001[1001] = M(1001, 999) (Class 7: Up-arrow notation level)
Epto-Hayden = 1,002[1001] = M(1002, 999) (Class 7: Up-arrow notation level)
Zeto-Hayden = 1,003[1001] = M(1003, 999) (Class 7: Up-arrow notation level)
Eto-Hayden = 1,004[1001] = M(1004, 999) (Class 7: Up-arrow notation level)
Flex-Hayden = (999[1001])[1001] = Beto-Hayden[1001] = M(M(999, 999), 999) (Class 7: Up-arrow notation level)
Flexing-Hayden = (1,000[1001])[1001] = Gamo-Hayden[1001] = M(M(1000, 999), 999) (Class 7: Up-arrow notation level)
Flexed-Hayden = (1,001[1001])[1001] = Deto-Hayden[1001] = M(M(1001, 999), 999) (Class 7: Up-arrow notation level)
Charged Hayden = 999[999[999]] = M(999, M(999, 997) - 2) (Class 8: Linear omega level)
Supercharged Hayden = 999[999[999[999[999[999[999[999[999]]]]]]]] (Class 8: Linear omega level)
I define Taro-Ackermann numbers as TA(n) = A(n, n, n, ..., n) (n n's) where n is a positive integer.
When n > 1, apply the rule above.
If n = 1, TA(1) = A(1, 0).
It’s a sequence defined with Taro's multivariable Ackermann function (not to be confused with the well-known Robinson's definition)
The first few Taro-Ackermann numbers are:
TA(1) = A(1, 0) = 0 + 1 = 1 (Class 0)
TA(2) = A(2, 2) = 2 + 1 = 3 (Class 0)
TA(3) = A(3, 3, 3) (Taro-Ackermann Tritri) (Class 9: Quadratic omega level)
TA(4) = A(4, 4, 4, 4) (Taro-Ackermann Supertet) (Class 10: Polynomial omega level)
TA(5) = A(5, 5, 5, 5, 5) (Taro-Ackermann Superpent) (Class 10: Polynomial omega level)
TA(6) = A(6, 6, 6, 6, 6, 6) (Taro-Ackermann Superhex) (Class 10: Polynomial omega level)
TA(7) = A(7, 7, 7, 7, 7, 7, 7) (Taro-Ackermann Supersept) (Class 10: Polynomial omega level)
TA(8) = A(8, 8, 8, 8, 8, 8, 8, 8) (Taro-Ackermann Superoct) (Class 10: Polynomial omega level)
TA(9) = A(9, 9, 9, 9, 9, 9, 9, 9, 9) (Taro-Ackermann Superenn) (Class 10: Polynomial omega level)
TA(10) = A(10, 10, 10, 10, 10, 10, 10, 10, 10, 10) (Taro-Ackermann Iteral) (Class 10: Polynomial omega level)
The threes of the darkness = 3@3 (Class 8: Linear omega level)