1) X'Y' + X'Y + XY = X'Y' + X'Y + X'Y + XY = (X'Y + X'Y') + (X'Y + XY) =
X'(Y+Y') + Y(X'+X) = X'+Y
2) A'B + B'C' + AB + B'C = (A'B + AB) + (B'C' + B'C) = 1
3) Y + X'Z + XY' = X + Y + Z
4) X'Y' +Y'Z + XZ + XY + YZ' = X'Y' + XZ + YZ'
5)
6)
7)
8)
9)
10)
11) List down all the Minterms and Maxterms for the Function Below.
12) Draw the Logic Circuit of the following Functions below.
13)
14)
15)
16)
17)
19) Given the Logic Circuit below, Complete the Outputs Waveforms.
HINT, You need to derive the TRUTH Table for the Boolean Functions
Y and Z Outputs. Show your Truth Table.
20) Simplify the Function below.
21)
22)
F(A,B,C,D) = A'BC' + AB'D' + A'B'C + BD
23) Implement the Multiple Inputs AND Gate with only 2-Inputs AND Gates.
24)
25)
26) Determine the Logic Circuit for the following Inputs A,B,C and the corresponding output Function f(A,B,C) as shown below.
27) Simplify f(A,B,C,D) = ABC + ABD + A'BC' + CD + BD'
a) Using Boolean Theorems and Postulates
b) Using K-Map.
f = B + CD
28) Derive the Logic Function and Circuit with 3 inputs A,B and C. The output is to be HIGH only when exactly one of the 3 inputs is HIGH. Implement using only NAND Gates for the Logic Circuit.
29) A Logic Circuit has 4 inputs A,B,C and D. Determine the Logic Expression for the circuit if the output is to be HIGH only when an odd number of inputs is HIGH. Implement using any Logic Gates for the Circuit.