Overview / 概要
The final research goal is to establish a design methodology of a human-machine system (HMS) which can improve QOL (Quality Of Life). As you know well, one of the most representative human-machine systems in daily life is a driver-vehicle system. In order to achieve safer, more comfortable, and more efficient traffic environment, we have to optimize the whole system including driver-vehicle-road in addition to improving vehicle performance. Consequently, my current research goal is to establish a design methodology of the driver-vehicle system in order to improve QOM (Quality Of Moving).
研究の最終目標は,人間の生活の質 (QOL: Quality Of Life)を向上するような人間機械系 (HMS: Human-Machine Systems) の設計論を確立することである.また,私たちの身近に存在する代表的な人間機械系の一つに,運転者-自動車系 (Driver-Vehicle Systems)がある.より安全で,より快適な交通環境を実現するためには自動車単体の性能を向上させるだけでは不十分で,運転者-自動車-道路を含む系全体の最適化を図る必要がある.このような背景のもと,当面の研究目標として,QOM(Quality Of Moving: 移動の質)の向上に資する運転者-自動車系の設計論構築を目指す.
Research Vision / 今後の展望
Current research keyword is "encourage (drivers to change their behavior for the better)". Even if various kinds of advanced intelligent systems will become widely used, a safety of the whole of the driver-vehicle system depends on "How do the drivers behave?" as long as the human drivers drive the vehicle. Accordingly, I want to clarify the effective method ("what", "when", "where", and "how") to provide the information about vehicle state and traffic situation in order to encourage them to change their driving behavior for the better.
現在取り組んでいる研究のキーワードは「促す」というものである.自動車が自動走行するのではなく運転者が操作して動かすものである限り,いくら自動車単体や道路環境が安全な仕組みを導入しても,系全体としての安全性は「運転者自身がどのように振舞うか?」ということによって決定されるといっても過言ではない.そこで,車両状態や交通状況に関して,運転者に情報を提供するにしても,いつ,どのように,情報提供を行えば,結果として運転者が安全な行動をとるのか,ということを明らかにしていきたいと考えている.
Research Topics
Vehicle Dynamics and Control
Automatic path tracking control law of 4WS vehicle
Integration of active steering and DYC
Interface Design
Multimodal interface (visual/auditory/haptic information)
Ecological Interface Design (EID)
Driver-Vehicle Systems based on Human-Centered Design
ADAS (Advanced Driver-Assistance System) to encourage drivers' behavioral adaptation for better driving
Night Vision Enhancement System (NVES)
Forward Collision Warning System (FCWS)
Eco-Driving Support System (EDSS)
Safe Driving Evaluation System (SDES)
Countermeasure for overspeeding by using illusion gates
Collision Risk Indices
Deceleration for Collision Avoidance (DCA)
Driver Behavior Analysis
Risk compensation behavior when using NVES/FCWS
Driving behavior at accident-prone area
Driver Model
Modeling of following behavior based on a minimum-jerk model
Modeling of route choice behavior based on a bounded rationality
FUBEN-EKI (Benefit of Inconvenience)